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Abstract

High-frequency trading (HFT) accounts for almost half of equity trading volume, yet it is not
identified in public data. We develop novel data-driven measures of HFT activity that separate
strategies that supply and demand liquidity. We train machine learning models to predict HFT
activity observed in a proprietary dataset using concurrent public intraday data. Once trained
on the dataset, these models generate HFT measures for the entire U.S. stock universe from
2010 to 2023. Our measures outperform conventional proxies, which struggle to capture HFT’s
time dynamics. We further validate them using shocks to HFT activity, including latency
arbitrage, exchange speed bumps, and data feed upgrades. Finally, our measures reveal how
HFT affects fundamental information acquisition. Liquidity-supplying HFTs improve price
discovery around earnings announcements while liquidity-demanding strategies impede it.
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1. Introduction

High-frequency trading (HFT) firms now execute nearly half of U.S. equity trading
volume, processing millions of orders in microseconds via automated algorithms (e.g., surveys
by Jones 2013; Menkveld 2016). Their dominance has sparked extensive research into their
market impact, with a crucial distinction between strategies that take versus provide liquidity.
Most HFTs operate as market makers, leveraging their speed advantage to provide liquidity
and reduce adverse selection risk, lowering trading costs and enhancing market liquidity (e.g.,
Hendershott et al. 2011; Menkveld 2013; Brogaard et al. 2015). However, other HFTs
aggressively consume liquidity, which can amplify adverse selection costs and exacerbate price
movements (e.g., Easley et al. 2011; Biais et al. 2015; Foucault et al. 2017).

Measuring HFTs’ activity is challenging because standard market feeds do not identify
it. Researchers have pursued two approaches, each with important limitations. Some studies
use private datasets with explicit HFT flags, most notably NASDAQ’s 120-stock sample from
2008-2009, but these cover relatively few stocks over short periods.! Others propose proxies
from public data, such as the quote-to-trade ratio (e.g., Hendershott et al. 2011) or odd-lot
volume (e.g., Weller 2018). However, these proxies do not distinguish between liquidity-
demanding and liquidity-supplying HFT strategies (Boehmer et al. 2018; Chakrabarty et al.
2023), and as we show below, they mainly reflect cross-stock rather than time-series variation
in HFT activity.

We introduce a data-driven approach to measure both liquidity-supplying and liquidity-
demanding HFT activity using machine learning (ML) techniques. We call these measures
HFT-S and HFT-D. Our method combines a proprietary dataset of directly observed HFT

activity with concurrent public intraday data. Specifically, we train ensemble models to predict

' NASDAQ’s 120 stock sample from 2008-2009 that we use is the most popular, but prior studies also used
proprietary data from the Investment Industry Regulatory Organization of Canada (IIROC)’s S&P/TSX 60 stocks,
and the National Stock Exchange of India (NSE)’s 100-stock dataset from 2015.



NASDAQ’s HFT activity using 24 measures of trading activity, liquidity, and volatility from
WRDS Intraday Indicators for the same stock and day. Consistent with Easley et al. (2021) and
Bogousslavsky et al. (2023), the ML approach captures complex non-linear relations and
variable interactions in HFT behavior. Once the models are trained out-of-sample on a
relatively small NASDAQ HFT dataset, we use them to generate HFT activity measures for
the entire TAQ universe covering 8,314 U.S. stocks from 2010 to 2023. Thus, this approach is
limited only by TAQ coverage.

We evaluate our HFT-S and HFT-D measures against five conventional HFT proxies,
including the quote-to-trade ratio, quote midpoint volatility, odd-lot volume, quoted price and
depth changes, and the number of trade and quote messages. Notably, quote data and these
measures were not among the 24 intraday variables used to train our measures. Using
NASDAQ HFT data from January to June 2009 for training and July to December 2009 for
out-of-sample validation, we find two key results. First, while conventional measures are
significant predictors of HFT activity in isolation, both HFT-S and HFT-D subsume their
information content in joint regressions. Second, conventional measures effectively capture
cross-stock variation but struggle to explain time variation in HFT activity, whereas our
measures remain significant in both dimensions. Thus, these findings are consistent with our
measures offering a more comprehensive and robust framework for capturing HFT activity.

We extensively validate our HFT measures outside the original training sample. Our
first key test examines a speed bump that NYSE Amex introduced in 2017 (Khapko and Zoican
2021; Ait-Sahalia and Saglam 2024), which adds intentional delays hindering fast trading. This
test is particularly valuable as it occurred well after our training period, helping validate our
measures’ temporal stability. The speed bump led to a substantial decline in HFT activity on
both liquidity supply and demand sides. In our second natural experiment, NASDAQ’s

increased its data feed speed in 2011 (Ye et al. 2013), benefiting HFT strategies. Indeed, both



HFT-S and HFT-D increase but naturally less than for the speed bump shock. Further validation
comes from examining latency arbitrage—when speed disparities among traders reacting to
public information create profitable opportunities (e.g., Budish et al. 2015). Our measures
capture theoretically predicted behaviors: a one standard deviation increase in arbitrage
opportunities leads to a 1% rise in HFT-D activity (as fast traders race to pick off stale quotes)
while reducing liquidity-supplying activity by 1.6% (as market makers withdraw to avoid being
picked off), consistent with prior evidence (Foucault et al. 2017; Aquilina et al. 2022).

Our HFT measures cover all U.S. stocks from 2010 to 2023, enabling applications that
require broad market coverage. We focus on one such application by examining how different
HFT strategies affect fundamental information acquisition. Price discovery—acquiring and
incorporating new fundamental information—remains a core function of financial markets.
Our ability to distinguish between HF T strategies allows us to test competing theories: whether
HFTs enhance information acquisition by providing liquidity and reducing costs (e.g.,
Menkveld 2013; Stiglitz 2014; Brogaard et al. 2015; Ait-Sahalia and Saglam 2024), or impair
it by adversely selecting informed investors (e.g., Van Kervel and Menkveld 2019; Yang and
Zhu 2020; Hirschey 2021).

In this test, we follow Weller’s (2018) methodology of measuring price informativeness
around earnings announcements.> While Weller (2018) finds that algorithmic trading reduces
price informativeness, we find that liquidity-supplying HFTs enhance information acquisition,
while liquidity-demanding strategies impede it.> This divergence explains Weller’s (2018)

results, as his proxies—quote-to-trade ratio and odd-lot volume—primarily capture HFTs’

2 Weller computes the “price jump ratio” as a measure of relative information acquisition by dividing the return
on earnings announcement by the total return over the pre-announcement period. A high price jump ratio indicates
that information was not discovered until publicly revealed, suggesting low pre-announcement information
acquisition. Unlike absolute measures like cumulative abnormal returns, this ratio captures how much information
enters prices early relative to potentially acquirable information.

3 We also employ an additional measure of information acquisition, the future earnings response coefficient (e.g.,
Lundholm and Myers 2002), and obtain results consistent with Weller’s (2018) price jump ratio.



liquidity demand in his sample. Finally, datasets with directly observed HFT trading are too
small for this application; for example, the NASDAQ HFT dataset only contains several
hundred earnings announcements.

We further validate our HFT measures through multiple complementary tests. First, we
document theoretically consistent nonlinear relationships between our HFT measure and
intraday variables. For example, HFT-D responds strongly to intermarket sweep orders
(consistent with Klein 2020) and is decreasing and convex in market depth, while HFT-S
exhibits an increasing, concave pattern (e.g., Goldstein et al. 2023). Second, both HFT types
increase around scheduled and unscheduled news events, with liquidity suppliers showing
larger responses—consistent with their role in information processing. Our measures also
capture these relationships more effectively than traditional linear regressions, highlighting the
advantage of ML. Finally, adding granular quote-level features only marginally improves
model performance, and our results hold for alternative volume scaling approaches.

A potential limitation of our approach is its reliance on NASDAQ’s 2009 HFT dataset
for training. While more recent proprietary data would be ideal, several factors mitigate this
concern. First, fundamental HFT strategies have remained relatively stable despite
technological advances, as evidenced by consistent patterns in market-making and directional
trading (Brogaard et al. 2014; Malceniece et al. 2019).* Second, our natural experiments
demonstrate that our measures capture meaningful variation in HFT activity both near and far
from the training period—particularly the introduction of the 2017 NYSE Amex speed bump.
Third, HFT strategies exhibit similar patterns across venues and firms, suggesting that training

on NASDAQ data generalizes to the broader market. Finally, while conventional HFT

4 For instance, the features of HFT strategies developed in more recent theories (Li et al. 2021a) are similar to
those outlined a decade ago (e.g., Biais et al. 2015; Foucault et al. 2017), suggesting continuity in these core
approaches. Additionally, many recent empirical papers still rely on datasets from 2009-2012 when investigating
the distinct roles of liquidity-demanding and supplying HFT strategies (e.g., Boehmer et al. 2018; Goldstein et al.
2023; Nimalendran et al. 2024), confirming the ongoing relevance of the NASDAQ HFT data.



measures face similar data vintage limitations, our approach offers the advantage of capturing
both cross-sectional and time-series variation in HFT activity.

Our study advances the HFT literature in two key dimensions. First, we develop novel
measures that separately capture liquidity-demanding and liquidity-supplying HFT strategies
using ML techniques. While previous research has shown that public HFT proxies can reflect
both types of strategies (Boehmer et al. 2018; Chakrabarty et al. 2023), our approach generates
separate measures for each, enabling a more targeted analysis of HFT behavior. This distinction
proves crucial for understanding HFT’s market impact—for instance, our finding that Weller’s
(2018) documented negative relationship between HFT and information acquisition stems from
liquidity-demanding strategies reconciles seemingly contradictory results in the literature.
Moreover, our methodology creates an open-access HFT dataset covering the entire U.S. equity
market from 2010 to 2023, allowing researchers to investigate the long-term effects of different
HFT strategies and test theoretical predictions.

Our work also contributes to the growing application of ML in market microstructure.
Recent studies show ML’s effectiveness in analyzing informed trading (Bogousslavsky et al.
2023), hidden liquidity (Bartlett and O'Hara 2024), price discovery (Kwan et al. 2021), and
volatility (Easley et al. 2021). Given that HFT firms now execute nearly half of U.S. equity
trading volume, developing reliable measures of their activity is crucial for understanding
modern markets. Our ML approach shows that complex trading patterns can be effectively
captured through public data. Moreover, by revealing how HFTs respond differently to public
versus private information compared to traditional informed traders, our measures offer new

insights into price discovery.

2. Data and variables

We use two primary datasets. The first is the NASDAQ-provided dataset that labels

HFT and non-HFT transactions for 120 randomly selected stocks listed on NASDAQ and



NYSE in 2009. In this dataset, NASDAQ classifies transactions into those executed by HFTs
and non-HFTs (e.g., Brogaard et al. 2014), and provides detailed information such as the date
and time (to the millisecond), volume, price, direction, and the liquidity profile of each trade,
identified as HH (both parties are HFTs), HN (an HFT demanding liquidity from a non-HFT),
NH (a non-HFT demanding liquidity from an HFT), and NN (both parties are non-HFTs). The
second primary dataset is obtained from the TAQ’s Intraday Indicators for the same period and
contains 24 variables identified in the relevant literature as associated with HFT activity. The
variables include various measures based on aspects such as price, trading volume, trading
costs, liquidity, volatility, and the dynamics of retail and institutional trading. The list of these
variables and their detailed descriptions are provided in Table 1.

We employ these two datasets in our ML model to generate a secondary dataset, which
estimates HFT activity from publicly available TAQ data, spanning January 4" 2010 and
October 18 2023, based on training enabled by the proprietary NASDAQ dataset. The main
output variables of our ML model are the fractions of trading volume attributed to liquidity-
demanding (NHF Tif’t) and liquidity-supplying (NHF Ti,st) HFTs. Specifically, NHF Tl-l,)t
(NHF T{?t) is calculated as the sum of HH and HN (HH and NH) volume divided by the total
trading volume for stock 7 on day #. Our ML model is presented in Section 3 below.

INSERT TABLE 1 HERE
To validate our ML-generated HFT measures, we obtain multiple complementary
datasets. We calculate commonly used HFT proxies using quote-level data from the
Millisecond TAQ database and benchmark ML-generated measures against them. We obtain
intraday transaction data and corresponding bid-ask quotes from Refinitiv DataScope.
Corporate event dates—specifically earnings and merger and acquisition (M&A)

announcements—are collected from I/B/E/S and the Thomson Reuters Securities Data



Company (SDC) database, respectively. Stock returns and trading volume data are sourced
from the Center for Research in Security Prices (CRSP).

To jointly test the empirical relevance of ML-generated HFT metrics and the
association between HFT and various market quality measures, we estimate different
regression models as specified in subsequent sections. The main and control variables
employed in these models are also introduced within their corresponding sections. Definitions
and summary statistics for these variables, along with the summary statistics for the ML-
generated HFT measures, are presented in Table 2.

INSERT TABLE 2 HERE

ML,D
Ti t

The mean values for ML-generated liquidity-demanding (HFT;;™") and -supplying

HFT (HFTL-I";’L'S ) activity stand at 0.316 and 0.208, respectively, and the difference is

statistically significant at the 0.01 level. This indicates a predominance of demand over supply
within the observed sample. The standard deviation indicates a non-negligible level of
variability in HFT activity, with demand showing slightly more variability (0.112) than supply
Tie”

(0.101). Furthermore, the comparison of mean and median values shows that HFT; ;™ is right-

skewed while HF TZ‘;’L'D is left-skewed. Spread; ; shows a mean of 0.142% with a wide range
up to 0.886%, implying diverse liquidity conditions across the sampled stocks. This is to be
expected since our sample includes 8,314 stocks—essentially the universe of US stocks
available in the TAQ database. Volume; ; has a high degree of variability (mean: 2.614, max:

47.392).

3. Machine learning and high-frequency trading measures

3.1. Modeling and experimental choices

Our ML methodology exploits ensemble learning, with an ensemble in supervised ML

being a finite set of predictive models, often of the same type, used to generate outputs for a



desired set of dependent variables. The main reason for this approach is the ability to build a
collective predictor that is stronger than its constituent parts, which are correspondingly
referred to as “weak learners.” This usually results in a better generalization when predicting
data not previously seen by the model, meaning an improved performance for out-of-sample
testing (see Bishop and Nasrabadi 2006, for a general overview). Models used in such
ensembles are generally less complex when compared to similarly powerful single-model
approaches. Coupled with their strong generalization performance, they have come to enjoy a
broad adoption in the literature applying ML to non-linear problems in finance—and, indeed,
many other research areas (Parker 2013; Moews et al. 2021; Cao 2022).

Our ensemble features decision trees (Breiman et al. 1984), one of the best-established
supervised ML models, and the random forest model. Introduced by Ho (1995), the random
forest model and its derivatives are one of the earliest ensemble learning methods that remain
popular across research fields (Wu et al. 2008), including in financial economics (e.g., Easley
et al. 2021; Bogousslavsky et al. 2023). Recent derivates are extremely randomized trees,
generally abbreviated as “extra trees” (Geurts et al. 2006). In conducting our experiments, we
implement the common mean squared error as the splitting criterion, meaning that for the true
values of independent variables Y and corresponding predictions ¥ for a dataset of size n,

MSE =237 (v, - 7,)° (1),
In the case of extra trees, this translates to variance reduction as the selection criterion. Using
independent (input) and dependent (output) variables as listed in Table 2, we construct each
ensemble in our experiments with these 24 inputs and analyze two targets.

Other relevant model choices in our experimental setup are largely informed by
computational feasibility. This concerns, most importantly, two parameters, the number of
experiment repetitions to gauge consistency through an approximated standard deviation and

the number of data points used per experiment. The former is set to 10 to allow for reasonable



runtimes, whereas 10,000 data points are used as a size more than sufficient for the type of
model used. The degree of simplicity of the constituent models is an advantage over, for
example, various deep learning approaches (Genuer et al. 2017). To make use of the full trade
data available, we select samples in a uniform-random manner for each experimental iteration
and split off 25% as the testing set. We employ Monte Carlo cross-validation, which is an
attractive option choice, in comparison to e.g., k-fold cross-validation.’ In each experiment
repetition, multiple random splits into training and testing sets are performed as uniform-
random samples from the full dataset. In doing so, the size and split percentage for these subsets
can be chosen freely, with a lower variance at the cost of higher bias. The results exhibit Monte
Carlo variation across multiple runs and, in the limit, the results become that of exhaustive
cross-validation (e.g., Li et al. 2010).

Other parameter choices we make are less clear-cut and thus require optimization. This
concerns the number of models per ensemble and the minimum number of samples for node
splits. We employ a grid-based optimization approach, with 8 options each for a total of 64
experiments with different parameter combinations, and with 10 experiment repetitions each.
Each experiment uses a tuple of values from {5, 10, 20, 40, 80, 160, 320, 640} in a grid-based
optimization approach. More complex alternatives for parameter optimization exist but are not
warranted in this case. While a larger number of trees and a smaller number of samples per
node split are often the optimal choice, this is primarily done as a precaution against challenges
such as lack of generalizability for small node split values in some instances (Probst and

Boulesteix 2018). Results of these experiments are provided in Table 3, in which we use the

> While the commonly used cross-validation approach in ML is k-fold cross-validation, which involves splitting
the data into k subsamples followed by training on all except one of these samples, and swapping the subsample
used as the test set each time until averages can be calculated for k iterations (Hastie et al. 2009). However, the
benefit of using the entire data in the process is also the main drawback in the case of very large datasets. The
computational complexity of a decision tree with the number of independent variables and tree depth being held
constant is 0(nlog(n)), n denoting the number of entries in the training data. While the randomization component
in extra trees alleviates some of that issue, the number of trees in an ensemble then acts as a further multiplicative
factor.



arithmetic mean and standard deviation of R? across repeated iterations to assess the respective
model’s quality.
INSERT TABLE 3 HERE

Unsurprisingly, a larger number of trees with finer node splits until fewer samples per
split are left generally correspond to better results for out-of-sample generalization with high
accuracy. This preference is the clearest for the latter, with all five top and bottom results using
the lowest and highest option, respectively. The standard deviations of the calculated R? values
demonstrate the consistency of the model’s performance with randomly sampled subsets of the
data. We lock these parameter choices in subsequent experiments to these values and also retain

10 iterations per experiment going forward.

3.2. Comparison to related machine learning predictors.

While the described ensemble learning approaches are particularly suitable due to their
accessibility, it is prudent to contrast the outcomes of our modeling and experimental choices
with competing options. As we deal with a regression instead of a classification problem,
potentially suitable machine learning models commonly used for similar prediction problems
include random forests as the baseline for tree-based ensembles, support vector machines
(SVM) in their regressor variation and feed-forward neural (FNN) networks with multiple
hidden layers, the latter under the umbrella of “deep learning”. Thus, also use SVM and FFN
on a comparative basis, using best-practice parameters with a fast-enough computation
Specifically, we implement SVM with a radial basis function kernel, provide the tree-based
ensembles with 50 estimators and minimum node split samples, and built the artificial neural
network with three hidden layers using rectified linear units and mean absolute error
optimization. Employing both SVM and FNN means that we can benchmark the likely
candidate models against a simpler approach, i.e., SVM, to gauge the difficulty of the

prediction task, and a complex comparison model, i.e., FNN.
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Our dataset for 2009 contains 29,880 stock-day data points, of which we drop 2,184, or
around 7%, due to missing values in one or multiple of the independent and dependent
variables. This is an acceptable loss, as the alternative of interpolation or imputation approaches
for high-frequency trading information are inherently risky due to the assumptions that would
need to be made. We employ scaling to avoid variability in values putting undue weight on
some of observations over others. In contrast to the later results, these initial experiments apply

z-score scaling, also commonly called standardization, in which, for a dataset, D,

Di—B

ZDi = O'(D) (2)9

We choose this scaling method as opposed to min-max scaling, which is also known as
normalization, due to the latter’s sensitivity to outliers. We then test both multi-model (each
model predicting one target variable) and multi-target (one model predicting points in the
complete target space) frameworks if applicable, in this case for the tree-based ensembles. The
former is only advisable in cases in which a multi-target approach does not perform well
enough, as the interconnectivity between different dependent variables is lost.

While SVM can be used for regression, this is limited to the multi-model approach by
default. Feed-forward artificial neural networks can handle both cases, but the complexity of
these models would not benefit from simplifying the prediction. The result of this comparison
is listed in Table 4. Specifically, Table 4 presents arithmetic mean and standard deviation
estimates for R? values across 10 iterations for support vector regression/machines, feed-
forward artificial neural networks, and random forests as well as extra trees for multi-model
and multi-target setups.

INSERT TABLE 4 HERE

While the results by themselves are promising, SVM notably underperforms the

alternatives, while the extra trees approach provides the highest mean performance and, aside

from the artificial neural network, the lowest standard deviation estimate. Although the
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universal approximation theorem concerns the predictability of arbitrary functions under
minimal assumptions, this does not ensure the learnability of the necessary weights, which is a
major challenge in the related literature (Zhang et al. 2017). We thus opt for extra trees both as
the stronger average predictor and given the consideration that highly complex models should
only be used when simpler ones do not suffice. This also allows for improved parameter

optimization with reasonable resource spending.

3.3.Model assessment and extrapolation to U.S. stocks

The final experiment is implemented with the optimized parameters as described in the
previous section, which across these multiple runs results in an average R? value of 0.824635,
with a standard deviation of 0.005472. The application of z-score scaling is no longer
necessary, as node splits in decision trees are not negatively affected by unscaled inputs. For
this reason, the standard deviation is no longer directly comparable to the results in Section 3.2.
A comparison to a prior non-optimized but unscaled implementation finds that, aside from an
improved goodness of fit, the standard deviation is approximately halved through our
optimization.

We then use this model, i.e., extra trees with multi-target, to extrapolate to all U.S.
stocks obtained from the TAQ database as described in Section 2. The data covers an
approximately 13-year period from January 4" 2010 to October 18 2023, corresponding to a
total of 9,440,600 non-missing stock-day observations for each of the 24 input variables listed
in Table 1. All dependent variables are then predicted for the entirety of the above-mentioned
data, leading to the creation of an ML-generated HFT dataset with 9,440,600 stock-day
observations. These observations constitute the secondary dataset employed for subsequent

analysis in subsequent sections.

3.4.Properties of machine learning-generated HFT measures
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A key strength of ML over traditional predictive models lies in its ability to capture the
nonlinearity between input and output variables. This aspect is crucial for our study, given the
nonlinear nature of the relationship between HFT and market quality characteristics. For
instance, Foucault et al. (2017) show how HFT arbitrage strategies might either enhance or
impair liquidity, contingent on the nature of latency arbitrage opportunities (e.g., Rzayev et al.
2023). Consequently, ML emerges as an optimal approach to model HFT activity in financial
markets given its adeptness at navigating the complex, nonlinear interdependencies inherent in
market dynamics.

In this section, to determine if our ML modeling framework captures nonlinear
interactions between HFT activity and its predictors, we analyze partial dependence plots. We
start by assessing the feature importance plot to identify key drivers of HFT activity. Next, we
explore the relationships between HFT and these key drivers through partial dependence plots,
focusing on the nature and shape of these interactions.

INSERT FIGURE 1 HERE

Figure 1 demonstrates that most of our selected input variables significantly influence
HFT activity predictions. Key among these are the number and value of trades, intermarket
sweep orders (ISOs), and measures of market depth. The importance of trading volume and
market depth for HFTs is intuitive: HFTs require counterparts for transactions, making volume
a crucial factor. Similarly, market depth, indicative of liquidity and trading availability, is
essential for HFT activities. However, the significance of ISOs predicting HFT activity is
noteworthy. This finding aligns with the broader concerns in financial markets about ISOs.
Originally intended for large institutional traders, ISOs are now believed to be increasingly

exploited by HFTs to gain an advantage over slower market participants.® Supporting this, Li

6 https://tabbforum.com/opinions/why-hfts-have-an-advantage-part-3-intermarket-sweep-orders/
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et al. (2021b) find that ISO order sizes are generally smaller than those of traditional
institutional traders and are often employed by fast traders. Our findings corroborate these
observations, highlighting the potential use of ISOs by HFTs.

INSERT FIGURE 2 HERE

Having pinpointed the key drivers of HFT activity, we further explore the shape of the
relationships between these determinants and HFT activity through partial dependence plot. As
evident in Figure 2, the association between HFT activity and various input variables are indeed
nonlinear. For instance, liquidity-demanding and -supplying HFT activity both demonstrate an
increasing, yet concave, relationship with the total number of trades. This positive correlation
with trading volume is expected, as HFTs are more active when trading volumes are high. This
is consistent with Brogaard et al. (2014), who shows that HFTs favor trading in larger stocks,
which tend to be more liquid.

A particularly compelling pattern emerges when examining the interplay between HF T
metrics and ISOs, as well as market depth. The fraction of liquidity-demanding HFT activity
exhibits a pronounced initial increase with ISOs, characterized by a concave curve,
highlighting a significant initial influence of ISOs on liquidity-demanding HFT activity.
Conversely, the relationship between liquidity-supplying HFT activity and ISOs is relatively
flat, showing only a marginal rise in the HFT supply fraction as the dollar amount of ISOs
increases, suggesting a lesser impact. This differential sensitivity of liquidity-demanding
versus liquidity-supplying HFT activities to ISOs aligns with existing academic findings. Li et
al. (2021b) demonstrate that HFTs often employ ISOs to target stale quotes, a tactic
predominantly associated with liquidity-demanding strategies. Furthermore, Klein (2020)
suggests that aggressive HFT strategies involve using ISOs upon the arrival of new
information. A competing view is that the relationship between liquidity-demanding HFT

activity and ISOs is reflective of the response of HFTs to institutional traders using ISOs to
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avoid being front-run by HFTs. This is because, as noted by Chakravarty et al. (2012), the ISO
exemption to Rule 611/Order Protection Rule of Reg NMS was adopted to allow institutional
investors timely access to liquidity (at multiple price levels) needed to execute large block
orders through the parallel submission of orders across multiple trading platforms.

The dynamics between market depth and both liquidity-demanding and -supplying HFT
activities also present interesting insights. Liquidity-supplying HFT activity shows an
increasing and concave relationship with market depth, suggesting that HFTs are more inclined
to provide liquidity as the order book deepens. On the contrary, liquidity-demanding HFT
activity demonstrates a decreasing and convex pattern with market depth, indicating a reduced
tendency to demand liquidity in deep markets. This observation is in line with the findings of
Goldstein et al. (2023), who show that HFTs tend to supply liquidity in deeper markets (where
the order book is thick) and demand liquidity in shallower markets (where the order book is
thin).

The findings from this section lead to two key implications. First, the nonlinear
relationship between HF T activity and market quality underscores the necessity of ML models
for forecasting HFT activity. Second, the distinct patterns observed in the relationship between
market quality indicators and HFT strategies—varying across liquidity-demanding and -
supplying activities—align well with existing debates in the literature. This alignment confirms
the empirical relevance of our ML-derived HFT demand and supply metrics in capturing the
nuanced strategies of HFTs. Below, we offer validating evidence on the relevance these ML-

generated HFT metrics and examine their empirical significance in detail.

4. Testing the properties of ML-generated HFT.
4.1.HFT ahead of scheduled and unscheduled information events.

To test the empirical validity of the ML-generated HFT measures, we commence with

Tin;”"D) and liquidity-supplying

an exploration of the dynamics of liquidity-demanding (HFT;
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(HF Ti{\z]“'s) HFT activity during both scheduled and unscheduled information events. As argued

in Foucault (2016), one of the primary characteristics of HFTs is their rapid response to major
information events (see also Brogaard et al. 2014). This characteristic forms the basis of latency
arbitrage, a phenomenon that encapsulates the purpose of liquidity-demanding HFT activity
(Aquilina et al. 2022), and liquidity-supplying market maker quote updates that typically
follows the emergence of latency arbitrage opportunities (Boehmer et al. 2018; Rzayev et al.
2023). Thus, examining the behavior of the ML-generated HFT measures around information

events is a logical first step in assessing the empirical relevance of HF Tilvt”“‘D and HF T%L’S.

INSERT FIGURE 3 HERE

We first focus on earnings announcements as scheduled events. Panels A and B of
Figure 3 show the dynamics of HFT; tL’S and HF Til‘gL'D surrounding earnings announcements,

with 95% confidence intervals plotted over a 20-day window spanning ten days before and
after the announcement dates. Both HFT measures display an increasing pattern starting three
days before the announcement, reaching their maximum on the announcement day. To quantify
the announcement effects, we contrast the average HFT activity during a three-day
announcement window (days ¢, t+1, and ¢t+2) with pre-announcement levels. The three-day
period is chosen in line with previous research that investigates the short-term effects of

earnings announcements (e.g., Ball and Shivakumar 2008). Our results show statistically

ML,S -
Tl- ¢ Tises

significant increases in both HFT measures during the announcement window: HFT;

by 6.3% (from 0.208 to 0.221) and HFT%L'D increases by 2.8%.

Complementing our analysis of scheduled events, we examine HFT behavior around
unscheduled M&A announcements, which may contain higher information content than
earnings announcements (e.g., Bogousslavsky et al. 2023). This analysis also provides
additional insights because HFTs predominantly engage in latency arbitrage strategies—
rapidly processing public information—rather than exploiting private information (e.g., Budish
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et al. 2015; Aquilina et al. 2022). This indicates that, unlike earnings announcements where we
observe increased activity three days before the event, the unscheduled nature of M&A
announcements may limit the availability of exploitable information before the event, which
can make M&A announcements potentially less conducive to HFT strategies in the pre-
announcement period.

INSERT FIGURE 4 HERE

Panels A and B of Figure 4 illustrate the dynamics of HF TiI’VtIL‘S and HF TL-I;IL’D around

M&A announcements. Consistent with our expectations, HF Tiﬂ;’L’S begins to increase just one
day before the announcement—in contrast to three days for earnings announcements—while
HF TinzL’D rises only from the announcement day. This pattern differs from the informed trading

intensity (ITI) measure of Bogousslavsky et al. (2023), which increases approximately three
days before unscheduled events. While our HFT metrics may share some characteristics with
ITI, their distinct behavior around unscheduled events provides important differentiation. The
divergence suggests that while informed traders exploit private information before unscheduled
events, HFTs primarily trade on public information after such announcements, consistent with
prior literature (e.g., Rzayev and Ibikunle 2019).

We next compare the average HF Tif\gL’S and HF Til’lfL’D during the three-day

. . . . . . ML
announcement window with their pre-announcement levels. During this window, HFT;, a

increases by 3.2% and HFTl.I";’L’D rises by 1.2%, with both increases being statistically

ML,S
T,;;) show a

significant at the 1% level. Thus, liquidity-supplying HFT activities (HFT;

substantially larger increase than liquidity-demanding activities (HF T;‘;’L’D

) during information
events, with the former being twice the magnitude of the latter. This pattern further validates

our ML-based methodology in distinguishing between liquidity demand and supply dynamics,

aligning with existing literature. Specifically, Brogaard et al. (2014) document that around
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macroeconomic news announcements, liquidity-supplying HFTs’ order flow increases more
significantly than liquidity-demanding HFTs’ flow, regardless of news sentiment. This
asymmetry likely stems from non-HFTs intensifying their aggressive trading during
unscheduled information events, with liquidity-supplying HFTs, who have become market
makers in today’s markets (e.g., Menkveld 2013), accommodating this increased demand. Cole
et al. (2015) provide supporting evidence, showing that during earnings announcements, non-
HFTs’> aggressive trading increases more than HFTs’, while liquidity-supplying HFTs
consistently meet this elevated non-HFT demand throughout the announcement periods.
Beyond demonstrating the empirical validity of our ML-generated HFT metrics, the
result in this section also carries significant economic implications. The larger increase in
liquidity-supplying HFT activity highlights the flexible nature of HFT strategies under
changing market conditions, particularly during times of heightened information flow. This
demonstrates that HFTs are more than just aggressive arbitrageurs in high-information
environments; they are key to preserving market liquidity (e.g., Hagstromer and Nordén 2013),
particularly when non-HFT participants may intensify their trading in reaction to new
information. These results are consistent with the literature that highlights HFTs’ contribution
to market efficiency and resilience during periods of significant information release (e.g.,
Brogaard et al. 2018). While the existing literature has already shown these trends primarily
using the NASDAQ HFT dataset, limited to 120 stocks, or through other proprietary datasets
with very short durations and limited samples, our study extends the insights by examining all
U.S. listed common stocks over a broader thirteen-year timeframe using publicly available

datasets.

4.2.HFT during exogenous technological changes.

We now examine how HF T%L'D and HF T%L‘S respond to exogenous shocks affecting

HFT activity through two natural experiments. The first experiment is a NASDAQ-
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implemented technology enhancement that reduces trading data dissemination latency from 3
milliseconds to 1 millisecond (e.g., Ye et al. 2013). The second experiment is Amex’s
implementation of a symmetric speed bump, which imposes equal speed restrictions on both
liquidity-demanding and liquidity-supplying HFT activity (e.g., Khapko and Zoican 2021; Ait-
Sahalia and Saglam 2024). The principle is straightforward: if our metrics capture HFT activity,
they should show significant responses to these HFT-specific market structure changes.

On October 10, 2011, NASDAQ initiated a technological upgrade that reduces trading
data dissemination latency from 3 milliseconds to 1 millisecond. This enhancement was
implemented in stages: stocks with ticker symbols beginning with A and B were upgraded on
October 10, while the remaining stocks were upgraded on October 17. Ye et al. (2013) employ
this staggered implementation to study HFT’s impact on market quality. Similarly, this phased
technological enhancement provides an ideal setting to examine the causal relationship
between our ML-generated HFT measures and technological changes. Given that the upgrade
reduces trading latency, we expect it to be related to an increase in HFT activity. We test this
hypothesis using the following stock-day regressions:

HFT"" = i+ B+ v1Postyc + Xim1 615Clt + & (3);

HFT%L'S =a; + B+ voPosti + Yi-y 5i],{tcil,(t + &t 4),
where HF TiI’Vt’L‘D and HF Tif\gL‘S are ML-generated liquidity-demanding and -supplying HFT
activity, respectively. We include stock («;) and day (B;) fixed effects to account for individual
stock characteristics and daily variations, respectively. Post; ; is an indicator variable equal to
1 after October 10, 2011, for NASDAQ-listed stocks with tickers beginning with A and B, and
after October 17, 2011, for other NASDAQ-listed stocks, and 0 otherwise. We also include
NYSE and Amex-listed stocks as control stocks (Post;, = 0 for these stocks throughout the
sample period) to implement a DiD framework (e.g., Malceniece et al. 2019). The standard

errors are double clustered by firm and day. Similar to Ye et al. (2013), we employ short

19



estimation windows to capture the effect; specifically, we use a 10-working day window
around the implementation dates.

Ci’ft includes a range of control variables, such as volatility (Volatility;.), relative
quoted spread (Spread;.), inverse price (InvPrice;;), and trading volume in dollars
(Volume; ;). Volatility; . is calculated as the daily () standard deviation of the transactional-
level returns for stock i. Spread,; . is the daily average of transaction-level bid-ask spreads.
The transaction-level bid-ask spread is calculated as the difference between ask and bid prices
divided by the average of ask and bid prices for each transaction. All these variables are
obtained from the TAQ database.

Our second natural experiment is the speed bump introduced by Amex. In January
2017, the Amex filed a request with the SEC to introduce a deliberate delay in the
communication between traders and the exchange. This proposed delay is designed to impact
both inbound (from traders to the exchange) and outbound (from the exchange to traders)
communications, establishing a total round-trip latency delay of 700 microseconds. The SEC
approved this request, leading to the trading delay’s activation on July 24, 2017. Given that the
introduction of a speed bump increases trading latency, it is expected to reduce HFT activity.
Therefore, if our ML-generated HFT metrics capture the dynamics of HFT activity, we should
observe a reduction in the metrics on Amex post the speed bump implementation. To formally
test this hypothesis, we employ the following stock-day regression:

HFTiI,\fL‘D =a; + B+ v Post;, * Amex;, + Yi—q 6{ftCi'ft + & (5);
HFT%L'S =a; + Be + v Post;, x Amex;, + Yi—q 5l-’ftCi'ft + & (6),
where Post;, is an indicator variable, taking the value of 1 on July 24, 2017, when the speed

bump was implemented and thereafter, and 0 before, while Amex; , corresponds to 1 for NYSE

Amex-listed stocks and 0 for NYSE- and NASDAQ-listed firms. Our models do not explicitly
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include Post;; and Amex;, indicator variables, as their effects are already accounted for
through the inclusion of time and stock fixed effects. All other variables are as defined above.
Similar to Models (3) and (4), we double-cluster standard errors by firm and day, and analyze
a 10-day window around the implementation dates.

Before discussing our results, we need to provide an important methodological

clarification. Our HFT measures (HF Ti{‘;’L'D and HF T%L‘S) are computed at the firm-day level,

aggregating activity across all exchanges. This raises a potential concern: if HFT's redirect their
orders from the treated exchanges (NASDAQ in Models (3)-(4) and Amex in Models (5)-(6))
to alternative venues, the impact of technological changes on overall HFT activity might be
dampened. However, this concern is likely minimal because HFTs typically prefer a stock’s
primary listing exchange due to superior market quality. For instance, late 2023 statistics show
Amex leading in terms of quote quality (time at best prices), quoted depth (size at best prices),
and spread tightness for its listed stocks.” These market quality advantages create strong
incentives for HFTs to maintain their activity on the primary exchange, suggesting that
technological changes should meaningfully impact HFT behavior.
INSERT TABLE 5 HERE

Table 5 reports the estimation results for Models (3) through (6). Columns (i) and (ii)
present the findings for NASDAQ’s latency reduction upgrade, while columns (iii) and (iv)
show the results for Amex’s speed bump implementation. Consistent with our predictions, the
HFT measures show significantly higher activity following NASDAQ’s upgrade and lower
activity after Amex’s speed bump implementation, relative to stocks listed on other exchanges.

Investigating the economic magnitudes of these shocks can provide additional
validation of our measures. The Amex speed bump represents a stronger shock to HFT activity

through its direct impact on trading speed. In contrast, NASDAQ’s improvement in trading

7 https://www.nyse.com/markets/nyse-american
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data dissemination is an indirect shock, as it only reduces latency for the consolidated feed
while HFTs can access direct and faster feeds. As Ye et al. (2013) note, changes to consolidated
feed latency affect HFT activity since HFTs utilize these feeds, but the impact is relatively
modest. Our results support this distinction. Following the speed bump implementation, Amex-

listed stocks experience decreases of 2.8% and 4.6% in HF T%L’D and HF TilfL’S, respectively,

relative to their pre-speed bump averages. In comparison, NASDAQ’s technological upgrade
leads to more modest increases of 0.7% and 1.1% in HF T%L'D and HF T;‘;’L’S for NASDAQ-

listed stocks, respectively, relative to their pre-upgrade averages.

Overall, the results in this section have three implications. First, our ML-generated HFT
metrics effectively capture HFT activity, validated by their response to technological shocks
and the varying response magnitudes between direct (speed bump) and indirect (trading data
latency upgrade) shocks. Notably, while NASDAQ’s trading data dissemination technology
upgrade occurs in 2011, near the period the data we use to train our ML model (2009) is
obtained, our measures also respond to the 2017 speed bump effects, suggesting the model’s
temporal robustness. Thus, the patterns learned by our ML model during the training stage
remain applicable to later periods.

Second, in line with theoretical predictions, changes in data dissemination speed and
speed bump implementations significantly affect HFT activity. Therefore, similar to colocation
upgrades (e.g., Brogaard et al. 2015; Boehmer et al. 2021a), these technological changes
provide exogenous shocks that can be used to examine HFT’s impact on financial markets.

Third, our speed bump findings complement Ait-Sahalia and Saglam (2024), who
document wider quoted spreads and reduced liquidity following Amex’s speed bump
implementation. Their theoretical framework links speed changes to market-making HFT
activity. We extend their analysis by showing that the speed bump affects both market-making

and market-taking HFTs, with market makers experiencing stronger effects, explaining the
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overall negative liquidity impact in their study. Moreover, the alignment between our findings
and Ait-Sahalia and Saglam (2024) provides evidence that our liquidity-demanding and
liquidity-supplying HFT metrics effectively capture supply and demand dynamics, we formally

investigate this in the next section.

4.3.HFT and latency arbitrage opportunities.

Our analyses provide preliminary evidence that our measures capture the distinct
characteristics of liquidity-demanding and -supplying HFT strategies. For example, we

ML,S
Tl t

consistently observe larger changes in HFT; TiI‘ZL'D

compared to HFT; around both

informational events and technological changes. This pattern aligns with existing literature in
two ways. First, it reflects HFTs’ tendency to act as net liquidity providers during high
information periods (e.g., Brogaard et al. 2014). Second, it corresponds to findings that speed
bump implementation leads to wider quoted spreads due to its stronger impact on liquidity-
supplying HFT activity (e.g., Ait-Sahalia and Saglam 2024).

To further validate this insight, we turn to the concept of “latency arbitrage.” Latency
arbitrage involves fast traders using their superior response speeds to exploit newly available
public information and execute against stale quotes before slower traders can (e.g., Budish et
al. 2015; Foucault et al. 2017; Shkilko and Sokolov 2020; Aquilina et al. 2022). Aquilina et al.
(2022) show that in the majority of latency arbitrage scenarios, a significant portion of HFT
activity is characterized by aggressive liquidity-taking behaviors (see also Aquilina et al. 2024).
This is attributed to latency arbitrage opportunities making aggressive HFT strategies more
profitable, thereby encouraging HFTs to engage more in such strategies (e.g., Baldauf and
Mollner 2020). Therefore, we suggest that latency arbitrage events offer a context to distinguish
between the specific characteristics of liquidity-demanding and -supplying HFT activity. In
particular, in the wake of latency arbitrage opportunities, we expect an increase in liquidity-

demanding HFT activity, in line with predictions by Baldauf and Mollner (2020) and Aquilina
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et al. (2022). A consequence of this increase in aggressive trading and sniping activity is the
increased risk of the imposition of adverse election on endogenous liquidity-supplying HFTs;
hence, liquidity-supplying HFT transactions are expected to decline (e.g., Foucault et al. 2017,
Menkveld and Zoican 2017).

To formally test this hypothesis, we estimate the following stock-day models:

HFT/{"? = a; + B+ v1NLAO; + Y- 8F.CE + & (7);

HFT" = a;+ P+ v2NLAOy + Ehoy 655CH: + & (8),
where NLAO, ; is the number of latency arbitrage opportunities. We identify latency arbitrage
opportunities following the arguments of Budish et al. (2015), which suggests examining the
magnitude of changes in mid-prices to identify ‘stale’ quotes. Specifically, a quote at time z —
1 is stale if the absolute difference in mid-price from time z — 1 to z is greater than the half
spread. Building upon this concept, we adopt a more conservative methodology by calculating
the jump size based on the difference between the mid-price at time z and the ask and bid
quotes at time z — 1. Mathematically, if Midprice, > (Ask,_, + TickSize), where TickSize
is set to 0.01$, it suggests the existence of a profitable latency arbitrage opportunity. Under
such circumstances, HFTs can leverage this opportunity by placing a limit buy order at
Ask,_, + TickSize at time z. Similarly, if Midprice, > (Bid,_; — TickSize), HFTs can
capitalize on this arbitrage opportunity by submitting a limit sell order at Bid,_; — TickSize
at time z. All other variables and notations are as previously defined.

We use the first-level quote data obtained from Refinitiv DataScope to identify latency
arbitrage opportunities. The primary challenge in this process is the substantial volume of data
required, which imposes a prohibitive computational cost for an analysis including the 8,314
stocks in our sample. Therefore, we narrow our focus to the sample of 120 firms included in

the original NASDAQ HFT data and used in training our ML model. We calculate NLAO; ; for

24



these 120 firms across our entire sample period, spanning 2010 and 2023. As reported in Table
2, the average number of latency arbitrage opportunities per stock-day is 68. The standard
deviation is high, at 169, and the maximum value is 1211, indicating considerable volatility in
the occurrence of these opportunities across stocks and days.

INSERT TABLE 6 HERE

The results, as presented in Table 6, show a positive and statistically significant (at the

0.01 level) relationship between HF T%L’D and NLAO;,, whereas the relationship between
HF T;‘;’L’S and NLAO; . is negative and statistically significant (at the 0.05 level). The magnitude
of the relationship between HF T%L‘D J/HF Tl-lfL'S and NLAO;, is also economically meaningful.
A one-standard-deviation increase in NLAO; ; (169) is associated with a 1% rise in HF Ti{\fL’D

and 1.6% decrease in HF Til"ZL’S.

While we refrain from claiming causality in Models (7) and (8), as it is not the primary
objective of estimating them, our results indicate that the relationships between latency
arbitrage and various HFT strategies are consistent with the existing body of research. The
literature suggests that arbitrage-seeking HFT's often adopt aggressive trading strategies during
latency arbitrage opportunities (e.g., Aquilina et al. 2022), and endogenous liquidity-supplying
HFTs are, thus, inclined to scale back on their liquidity provision (e.g., Foucault et al. 2017).
The alignment of our findings with those of established theoretical and empirical studies
highlights the empirical validity of HF Tifl;[L’D and HF TithIL’S in capturing the liquidity-
demanding and -supplying activities of HFTs.

Although our primary focus is not on investigating the impacts of aggressive HFTs and
latency arbitrage on financial markets, it is essential to discuss the interesting dynamics of their
interplay. The rise in aggressive HFT activity, driven by latency arbitrage, contributes to the

technological arms race and its associated costs (Aquilina et al. 2022). However, this process
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may not be universally negative for market quality. Indeed, the presence of aggressive HFTs
can enhance price efficiency. This occurs as these HFTs rapidly act on the existing information,
thus enabling stock prices to more swiftly reflect current information. This dual-edged nature
of latency arbitrage, where it simultaneously imposes costs due to the technological arms race
while potentially improving price efficiency by quickening the information assimilation
process into market prices, makes investigating the effects of HFTs in financial markets
complex. It, however, underscores the importance of a balanced approach in evaluating the
overall impact of HFT and latency arbitrage on market quality (e.g., Foucault et al. 2017,

Rzayev et al. 2023).

4.4.Comparing ML-generated HF'T Measures with Alternative Proxies.

In this section, we assess the ML-generated HFT measures against commonly used
proxies from the literature. In this test, for out-of-sample validation, we train our ML model
using only data from January to June 2009 to generate HFT measures. We then examine the
relationships between NASDAQ’s original liquidity-demanding and -supplying HFT measures
from July to December 2009 with both our ML-generated measures and the following HFT
proxies: flickering quotes (Flick;.), odd-lot volume (OLV;,), quote intensity (Quotelnt; ),
quote-to-trade volume ratio (QT; ;) and the number of messages (MG; ;).

Motivated by Hasbrouck (2018), Flick; ; measures quote volatility in two steps: first
calculating the standard deviation of quote midpoints over 100ms intervals, then averaging
these deviations by stock-day. OLV; ; captures the daily sum of trades smaller than 100 shares
(Weller 2018); Quotelnt;, counts daily changes in best quotes or quote depth (Conrad et al.
2015); QT; ¢ is the ratio of quoted shares to traded shares (Hendershott et al. 2011; Weller 2018)
and MG; ; is the number of messages (Hendershott et al. 2011; Boehmer et al. 2018). All five

metrics are calculated using the Millisecond TAQ database.
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We examine the relationship between HFT proxies and NASDAQ HFT measures using
the following regression models with stock and time fixed effects:
NHFTE, = a; + B + v1HFT["® + y,Flick;; + y30LV;, + y4Quotelnt; +

+VsQTir + VMGt + € 9);
NHFTS, = a; + Be + y1HFT)"® + y,Flick;, + y30LV; + y,Quotelnt;, +
+¥sQTir + VMGt + € (10),
where NHF Ti?t and NHF Tift are NASDAQ’s liquidity-demanding and -supplying HFT
measures, and HF T%L’D and HF TiI"ZL’S are our ML-generated proxies trained on data from
January-June 2009. Other HFT proxies are defined as above. A key limitation of existing
proxies is their inability to distinguish between liquidity-demanding and -supplying HFT
strategies (Chakrabarty et al. 2023). Consequently, we include all proxies in both Models (9)
and (10), estimating them both individually for each proxy and collectively, noting that
including all measures simultaneously may introduce multicollinearity. The sample consists of
120 randomly selected NASDAQ- and NYSE-listed firms with available NASDAQ HFT data
from July to December 2009, following the model training period of January-June 2009. We
double-cluster standard errors by firm and time and standardize all dependent variables to make
comparison between coefficients.
INSERT TABLE 7 HERE

Panel A of Table 7 shows the results for NHF T[?t. Among all proxies, HF T;‘;’L’S delivers

the strongest association with liquidity-supplying HFT activities from the NASDAQ HFT

dataset (NHF Tl-,st), demonstrated by the highest coefficient by magnitude (using standardized

'™ also achieves the highest within-R? values.

independent variables) and t-statistics. HFT;

ML,S
T, ;™" show

When incorporating all proxies simultaneously, the magnitude and t-statistics of HFT;

only minimal decrease.

27



The results for liquidity-demanding HFT activity are consistent with those for liquidity-
supplying HFT activities. In single-proxy regressions with stock and time fixed effects, only

QT; ; predicts NHF Tif)t with both correct sign and statistical significance. In contrast, HF T%L'D

consistently demonstrates superior correlation with NHF Tl-f)t, showing the highest coefficient

magnitude and t-statistics, along with the highest within-R? values.

Our estimation of Models (9) and (10) incorporates both stock and day fixed effects.
The consistently strong correlations between ML-generated HFT measures and actual HFT
values demonstrate these proxies’ predictive power across both cross-sectional and time-series
dimensions. In contrast, conventional HFT measures demonstrate relatively weak correlations
when both fixed effects are included. One reason for this result might be that these measures
predominantly capture either cross-sectional or time-series variation. To test this hypothesis,
we re-estimated Models (9) and (10) using only day fixed effects.

The results in Panels C and D of Table 7 confirm that when controlling solely for day
fixed effects, three conventional measures—Quotelnt;,, QT;;, and MG,;,—display
substantially stronger correlations with both liquidity-supplying and -demanding HFT
activities. This pattern suggests that conventional HFT measures primarily capture cross-
sectional variation. Notably, our ML-generated proxies maintain superior performance in this
specification, too, showing much higher t-statistics and within-R? values. Additionally, our
metrics subsume the information content of conventional HFT measures in joint regressions,
where we include both sets of measures together.

Overall, our results demonstrate the superiority of our ML-generated measures over
traditional HFT proxies. Our measures predict both liquidity-demanding and -supplying
strategies with larger coefficients, higher t-statistics, and greater R? values. Furthermore, while
our ML-generated measures effectively capture both cross-sectional and time-series

dimensions, conventional measures predominantly reflect cross-sectional variation.
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5. Application: HFT and information acquisition

The ML-based HFT measures have broad applications across various settings. In this
section, we examine one such application—price discovery in financial markets; specifically,
we demonstrate how the ML-based HFT measures shed new light on price formation
mechanisms in modern markets.

Price discovery, a fundamental function of financial markets, is the process through
which stock prices reflect information (e.g., O'Hara 2003), and it includes (i) the integration of
existing information into asset prices and (ii) the generation or acquisition of new fundamental
information (e.g., Brunnermeier 2005; Weller 2018; Brogaard and Pan 2022). The relationship
between HFT and price discovery has been extensively examined by a fledgling stream of the
market microstructure literature. The stream, which primarily concentrates on how existing
information is incorporated into stock prices (for a comprehensive survey, see Menkveld 2016),
largely suggests that HFT enhances the speed at which existing information is reflected in stock
prices, contributing to the efficiency of price discovery mechanisms.

The role of HFTs in acquiring new information, however, remains understudied for two
main reasons. First, measures of fundamental information acquisition are inherently low-
frequency. Second, theoretical frameworks suggest that empirically examining HFTs’ impact
on information acquisition requires distinguishing between liquidity-supplying and -
demanding strategies. While existing datasets that differentiate these strategies, such as
NASDAQ HFT data, are valuable for analyzing high-frequency market quality metrics like
liquidity, their limited sample periods and small number of stocks restrict their utility for
studying low-frequency phenomena like fundamental information acquisition. For example,
quarterly earnings announcements, the most frequent regular fundamental news events, yield

only four information acquisition measures per stock-year. Consequently, one year of
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NASDAQ HFT data covering 120 firms provides merely 480 observations. Our ML algorithm
addresses this limitation by generating HFT measures for the entire TAQ universe over an
extended period, enabling a more comprehensive analysis of how various HFT strategies
influence information acquisition.

HFTs can improve information acquisition by increasing market liquidity and reducing
trading costs through their liquidity provision function (e.g., Menkveld 2013; Brogaard et al.
2015; Ait-Sahalia and Saglam 2024). The mechanism is intuitive: lower trading costs increase
trading profitability, incentivizing investors to actively seek and capitalize on new information,
thereby facilitating information acquisition and dissemination. However, HFTs may also
employ aggressive strategies such as order anticipation, including back-running and latency
arbitrage, to predict and profit from informed institutional investors’ trades (e.g., Van Kervel
and Menkveld 2019; Yang and Zhu 2020; Hirschey 2021). These strategies could increase
trading costs for informed investors, potentially resulting in a crowding-out effect, which
discourages them from seeking new information, thereby reducing the overall acquisition of
new information.

Expanding on this discussion, Weller (2018) investigates the effect of HFTs on the
information acquisition process by introducing a novel information acquisition metric known
as the “price jump ratio.” This ratio is calculated by dividing the return at the time of public
information release by the cumulative return during the period leading up to the disclosure. The
underlying concept is that a more pronounced price movement during the announcement
suggests a less intense information acquisition process prior to the announcement, and implies
that information predominantly becomes reflected in prices only upon public release. Thus, a
higher price jump ratio means lower information acquisition. Weller (2018) concludes that

ATs/HFTs have a detrimental effect on the information acquisition process.
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While Weller (2018) enhances our understanding of HFTs’ role in information
acquisition, the study has a crucial limitation stemming from its use of MIDAS data. MIDAS
aggregates HFT activity and, thus, does not differentiate between specific trading strategies.
This limitation is crucial because theory suggests that HFTs’ impact on information acquisition
may vary fundamentally based on their trading strategies. Consequently, while MIDAS data
allows Weller (2018) to document a negative relationship between HFT presence and
information acquisition, it constrains the ability to investigate the underlying mechanisms
driving this relationship. Weller (2018) acknowledges this limitation and offers a preliminary
discussion of the strategies, ultimately emphasizing in their conclusion (p.2217) the need for
future research “fo assess the precise mechanisms by which improved trading technology
reduces the information content of prices.”

We respond to this call, by exploiting the unique proprieties of our ML-generated
measures to investigate the role of HFTs in the information acquisition process. Specifically,

we estimate the following regression model:

JUMPy g = a; + Pmg + viHFTg"" + v, HFT S + ko 85,C + & (11),

where JUMP; , is the ratio of cumulative abnormal returns during trading days [-1, 1]
surrounding earnings announcements, divided by the cumulative abnormal returns during
trading days [-21, 1] surrounding earnings announcements. Daily abnormal returns are
calculated as the raw return minus the expected return, which is determined using the market
model.

HF TZZL'D and HF T%L’S denote our ML-generated measures of liquidity-demanding and
liquidity-supplying HFT activity, respectively. We calculate these measures by averaging the

daily HFT values over the 21 trading days preceding earnings announcements [-21, -1]. Our

control variables (Ci'fq) include volatility (Volatility; 4), relative quoted spread (Spread; 4),
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market value (MValue; ), and institutional order imbalance (0IB20k;,). We obtain
OIB20k; , directly from TAQ, capturing the price impact of trades exceeding $20,000. We
compute MValue; , by averaging the daily market values over the same 21-day window, where

daily market value equals closing price multiplied by shares outstanding. The remaining control
variables represent 21-day averages of their daily counterparts prior to earnings announcements

[-21, -1]. Following Weller (2018), we include stock and month fixed effects.

We include both HF TiI‘ZL’D and HF T;‘;L'S in our regression model to examine their
comparative effects on information acquisition. The correlation coefficient between these
metrics is 0.52, suggesting multicollinearity is not a concern. Given that higher JUMP,; ; values
indicate reduced information acquisition, we expect HF T;‘;L'D to be positively associated with
JUMP; ,, as aggressive HFT strategies can increase trading costs and impede information
Ti]ZL’S

acquisition. In contrast, we anticipate HFT; ;” to be negatively related to JUMP; 4, since

liquidity-providing HFT strategies typically reduce trading costs, making information
acquisition more profitable.

INSERT TABLE 8 HERE
The estimation results of Model (11), reported in Table 8, show that HF T;‘ZIL’D has a
positive and statistically significant relationship with JUMP; ;. The economic significance is

. . ML,D
notable: an increase in a firm’s HFT, ™

iq  from the 25th percentile (0.222) to the 75th percentile

(0.414) is associated with a 6.6% increase in JUMP; ; relative to its mean value ((0.414-
0.222)x0.178/0.517). Conversely, HF TiI,ZL'S demonstrate a negative and statistically significant
relationship with JUMP; ;,, where an increase from the 25th percentile (0.131) to the 75th
percentile (0.259) corresponds to a 3.3% decrease in JUMP, 4 relative to its mean value.

As Weller (2018) documents that HFT/AT reduces information acquisition, our

analysis provides more nuanced insights into this relationship. Specifically, our findings
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suggest that the positive association between generic HFT measures and JUMP; ; shown in
Weller (2018) may be driven by the measures primarily capturing liquidity-demanding HFT
activity during the sample period. To examine this conjecture, we analyze the relationship
between Weller’s (2018) main HFT measures and our ML-generated HFT measures. Weller’s
(2018) measures, obtained directly from MIDAS, include cancel-to-trade ratio (CT; 4), odd-lot
rate (OLR; 4), and trade-to-order ratio (T0; 4). CT; 4 is the ratio of cancelled messages to trade
messages, OLR; ; measures the proportion of trades below 100 shares, and TO; ; is calculated
as the ratio of executed shares to submitted shares.
INSERT TABLE 9 HERE

The results presented in Table 9 help reconcile our findings with Weller’s (2018). CT; 4
and OLR, ; are positively linked with HF TiI'ZL’D, while TO; 4 (an inverse measure of HFT) is

negatively related. Conversely, the metrics display opposite relationships with HF TifZL’S. The

directions of the relationships remain consistent in simple univariate correlation analysis. Thus,
observed relationships, combined with Weller’s (2018) findings of positive relationships

between CT;,/OLR;, and JUMP,;,, and negative correlation between TO;, and JUMP; 4,

9>
suggest that the HFT measures in Weller (2018) predominantly capture liquidity-demanding
HFT activities.

To further explore the relationship between HFT and information acquisition, we
employ an alternative measure—the future earnings response coefficient (FERC) (e.g.,
Lundholm and Myers 2002; Ettredge et al. 2005; Brogaard and Pan 2022). Specifically, we
estimate the following model to obtain FERC:

Return;, = a; + B4 + Z}lz_l(ynEarningi,qun + OpEarning; g4 n * HFTiI,ZL’D +

O Earning; qn * HFT%L’S) + leFTl-{ZL’D + pZHFTl-I,ZL'S + psReturn; 4,1 +

psReturn; o + Yi_4 6qu Cl-'fq +eg (12),
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where Return, , is the quarterly stock return for firm i in quarter g, and is measured as the
percentage change in closing prices between quarters g — 1 and g. The subscript n ranges from
-1 to 1, capturing the temporal relationships in our model. Earning; 44, denotes quarterly
earnings (net income) normalized by the market value of equity at the start of quarter g + n. In
this specification, y,, encapsulates FERC, with a positive value suggesting that current returns
incorporate future earnings information—an indication of heightened fundamental information
acquisition in the current period. We employ the same control variables used in the jump ratio
model, averaged at the quarterly frequency.

The coefficients of interest in Model (12) are ,, and 6,,, which indicate whether HFT
enhances (positive coefficient) or impairs (negative coefficient) the incorporation of future
earnings information into current returns. Based on our jump ratio findings, where HF

ML,D

(H F T%L'S) is negatively (positively) associated with information acquisition, we expect 9,, and

6, to be negative and positive, respectively.
INSERT TABLE 10 HERE

Table 10 reports results that corroborate our findings from the jump ratio analysis. 8,
1s positive and statistically significant at the 0.01 level, while ¥9,, is negative and also significant
at the 0.01 level, indicating a positive (negative) relationship between liquidity-supplying (-
demanding) HFT activity and information acquisition.

We also extend our baseline results in two directions. First, we assess whether existing
HFT datasets that differentiate trading strategies are suitable for investigating HFT’s role in
information acquisition. This question is crucial because a positive answer would challenge the
need for ML-generated HFT measures. In a way, the relevance of this question in of itself is
debatable because, as severally noted, publicly available datasets that differentiate between

strategies used by HFTs do not exist at this time. Therefore, we use the time- and sample-
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limited and proprietary NASDAQ HFT dataset that covers 120 stocks for 2009 to replicate our
jump ratio and FERC analyses.
INSERT TABLE 11 HERE

Table 11 presents the results. Using the NASDAQ HFT dataset, we find no statistically
significant relationship between HFT strategies and information acquisition, due to the limited
sample size. This finding underscores the value of our ML-generated HFT measures for
examining HFT’s impact on low-frequency market quality metrics and, by extension, real
economic outcomes that typically rely on low-frequency data.

The second extension addresses concerns about our reliance on 2009 data to train the
ML model. First, it is important to note that the current literature continues to use the NASDAQ
HFT dataset because the core distinction between liquidity-demanding and liquidity-supplying
strategies remains fundamental to HFT behavior (e.g., Boehmer et al. 2018; Goldstein et al.
2023; Nimalendran et al. 2024). Moreover, in Section 4.2, we show that our measures respond
to technological shocks both near and far from the training period. Nevertheless, we provide
additional validation by examining the HFT-information acquisition relationship in the period
close to our training sample. Similar results between this restricted sample and our full sample
would indicate that our findings are not sensitive to the temporal distance from the training
data.

INSERT TABLE 12 HERE

Table 12 presents results using data from January 2010 to December 2012. For both the
jump ratio and FERC analyses, the findings mirror our baseline results. Specifically, liquidity-
demanding strategies show a negative relationship with information acquisition, while
liquidity-supplying strategies demonstrate a positive association.

A cautionary note regarding our results in this section is important. Our study’s primary

contribution is not the investigation of HFT’s role in information acquisition, but rather the
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development of ML techniques to identify and measure HFT strategies using publicly available
data. We explore information acquisition as one important application of the ML-generated
HFT measures. While the relationship between HFT and information acquisition is an
understudied yet economically significant question, we do not claim to establish a causal link
between HFT activity and information acquisition, acknowledging the complexity and
potential endogeneity concerns. Nevertheless, our results demonstrate that ML-generated HFT
measures provide valuable tools for investigating the relationship between HFT and real
economic outcomes, which are inherently low-frequency in nature. This data-driven approach
is particularly important because econometric approaches using exogenous shocks, such as in
a DiD framework, cannot effectively examine the real effects of various strategies employed
by HFTs, as these shocks symmetrically impact both liquidity-demanding and -supplying
strategies. Therefore, distinguishing between different HFT strategies through data is essential
for understanding their distinct economic impacts. Furthermore, our findings complement
Weller (2018) by providing empirical evidence of specific mechanisms through which HFT

activity affects information acquisition.

6. Extensions to the ML framework: Feature space and scaling analysis

In this section, we extend our baseline ML framework in two ways. First, we augment
the feature space of our ML methodology. The selection of input features in ML involves two
competing considerations. More granular data could potentially enhance prediction precision
although are typically less accessible, costlier, and harder to process. Alternatively, more
accessible data sources may sacrifice some predictive power while enabling wider application
and replication. Our baseline model prioritizes the latter—a key contribution in developing
HFT measures from non-proprietary data. Hence, our ML framework employs daily input

features derived directly from TAQ’s Intraday Indicators.
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However, these indicators lack quote-level granularity, such as message counts or quote
update frequencies, potentially constraining the ML model’s training effectiveness. We believe
that this concern is substantially mitigated by our ML model’s R? of 82%, indicating that our
input variables effectively capture the predominant variation in HFT activity. This suggests
that the potential gains from incorporating more granular quote-level data are limited.
Nevertheless, we assess this empirically by augmenting our feature set with quote-level data
from the Millisecond TAQ database to evaluate potential improvements in ML algorithm
performance during training. The additional quote-level features include message counts, quote
update frequencies, small trade volumes (under 100 shares), and high-frequency midpoint
variations over 100-millisecond intervals—metrics previously linked to HFT activity (e.g.,
Chakrabarty et al. 2023). We calculate these measures for 2009, our ML model training period.
Using data from January to June 2009, we train two pairs of ML models: one pair using only
the original daily features from TAQ’s Intraday Indicators database, and another incorporating
both daily indicators and the granular quote-related features from the TAQ’s Millisecond
database. We then generate HFT measures for July to December 2009, enabling an out-of-
sample comparison between models with and without quote-related information.

We document three key findings. First, incorporating quote-related information
marginally improves the ML model’s performance, increasing the R? from 82% to 84%.
Second, the HFT measures generated with and without quote-related information demonstrate
remarkably high correlations. Specifically, the correlation coefficient between liquidity-
supplying HFT measures with and without quote-related information is 0.99, while the
corresponding correlation for liquidity-demanding measures is 0.96. Third, when we regress
the HFT values from the NASDAQ HFT data on the ML-based HFT measures generated with
quote-level information, the coefficient estimates and t-statistics differ only marginally from

those in Table 8, where we report the correlation between the NASDAQ HFT values and the
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ML-generated HFT measures based on the baseline model without quote-level information.
These results suggest that the input features from the TAQ intraday indicator database
sufficiently capture HFT activity, with additional quote-related information providing only
minimal, even negligible, incremental value.

This finding is unsurprising as our initial input features incorporate variables strongly
associated with quote-level activity, including market depth and bid-ask spreads. Indeed,
analysis of correlations between quote-related input features and our original trade-related
features demonstrates strong relationships. Specifically, the total number of trades exhibits a
0.90 correlation with message count, while message count shows correlations exceeding 0.65
with both ISO trades and market depth. Additionally, the frequency of quote revisions
demonstrates strong correlations (exceeding 0.70) with trade frequency, ISO trades, and market
depth.

Our second extension addresses the scaling of HFT measures. Thus far, we have
demonstrated that the ML-generated HFT measures effectively capture both liquidity-
demanding and liquidity-supplying strategies. Additionally, these measures allow us to address
important economic questions that would otherwise remain unanswered. All of our tests are
based on scaled HFT measures, where HFT trading volume is normalized by total trading
volume. This scaling is important, as highlighted by Hendershott et al. (2011), to account for
total trading volume when examining the role of HFTs in financial markets. However, it also
raises a valid concern for our study. Specifically, since our ML algorithm is trained on scaled
HFT values, it may capture variation in total trading volume rather than HFT trading volume.
To address this, we also use the ML model to predict unscaled HFT trading volume using the

same input variables. In this test, the key target variables are unscaled liquidity-demanding

(NUHF Ti‘[g) and liquidity-supplying (NUHF Tl-‘?t) trading volumes, calculated as the sum of HH
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and HN (HH and NH) volumes for stock i and day t from the NASDAQ HFT data. We then
replicate all our tests using these unscaled values.

Our main findings remain robust when using scaled target variables, with the complete
set of results presented in the Online Appendix to this paper. Specifically, we confirm that: (1)
HFT activity systematically responds to both scheduled and unscheduled announcements and
technological changes, (2) shows distinct responses to latency arbitrage opportunities, (3) ML-
generated unscaled HFT measures outperform conventional HFT proxies, and (4) demonstrates
contrasting effects on information acquisition, i.e., negative for liquidity-demanding strategies

but positive for liquidity-supplying ones.

7. Conclusion

The impact of HFT on market quality has been a central focus of microstructure
research for the past fifteen years. However, this literature faces a key limitation: studies either
examine short-term market effects using detailed HFT data or investigate longer-term impacts
using generic HFT measures that fail to differentiate between liquidity-demanding and -
supplying strategies. This constraint has hampered our understanding of the mechanisms
driving HFTs’ effects over longer horizons.

We address this limitation by developing an ML approach that generates distinct
measures for liquidity-demanding and -supplying HFT activity. By training ensembles on
NASDAQ HFT data and TAQ variables, we create comprehensive HFT measures covering
8,314 U.S. stocks with 9,440,600 stock-day observations—spanning the entire universe of the
U.S. equity market over an extended period.

Our validation tests demonstrate that these ML-generated measures capture
theoretically predicted HFT behavior. The measures respond to both scheduled and

unscheduled information releases and exogenous technological changes. Moreover, they
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reflect strategy-specific reactions to latency arbitrage opportunities: liquidity-demanding HFTs
increase their activity while liquidity-supplying HFTs reduce it. Comparative analysis confirms
that our measures outperform alternative HFT proxies in correlating with actual HFT activity.

We demonstrate the importance of differentiating HFT strategies by examining their
role in fundamental information acquisition, a key market quality measure that can be tested at
low frequency. Our findings suggest that liquidity-supplying HFT activity is positively
associated with information acquisition while liquidity-demanding activity is negatively
related to it. This result provides clarity on how different HFT strategies affect price discovery
in financial markets, highlighting the value of our data and methodology in advancing financial

theory.

40



References

Ait-Sahalia, Y., Saglam, M., 2024. High frequency market making: The role of speed. Journal
of Econometrics 239, p.105421

Aquilina, M., Budish, E., O’neill, P., 2022. Quantifying the high-frequency trading “arms
race”. The Quarterly Journal of Economics 137, 493-564

Aquilina, M., Foley, S., O'Neill, P., Ruf, T., 2024. Sharks in the dark: quantifying HFT dark
pool latency arbitrage. Journal of Economic Dynamics and Control 158, 104786

Baldauf, M., Mollner, J., 2020. High-frequency trading and market performance. The Journal
of Finance 75, 1495-1526

Ball, R., Shivakumar, L., 2008. How much new information is there in earnings? Journal of
Accounting Research 46, 975-1016

Bartlett, R.P., O'Hara, M., 2024. Navigating the Murky World of Hidden Liquidity. Available
at SSRN

Biais, B., Foucault, T., Moinas, S., 2015. Equilibrium fast trading. Journal of Financial
Economics 116, 292-313

Bishop, C.M., Nasrabadi, N.M., 2006. Pattern recognition and machine learning. Springer.

Boehmer, E., Fong, K., Wu, J.J., 2021a. Algorithmic trading and market quality: International
evidence. Journal of Financial and Quantitative Analysis 56, 2659-2688

Boehmer, E., Jones, C.M., Zhang, X., Zhang, X., 2021b. Tracking retail investor activity. The
Journal of Finance 76, 2249-2305

Boehmer, E., Li, D., Saar, G., 2018. The competitive landscape of high-frequency trading
firms. The Review of Financial Studies 31, 2227-2276

Bogousslavsky, V., Fos, V., Muravyev, D., 2023. Informed trading intensity. The Journal of
Finance, Forthcoming

Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984. Classification and regression trees.
Monterey, CA: Wadsworth & Brooks. Cole Advanced Books and Software

Brogaard, J., Carrion, A., Moyaert, T., Riordan, R., Shkilko, A., Sokolov, K., 2018. High
frequency trading and extreme price movements. Journal of Financial Economics 128,
253-265

Brogaard, J., Hagstromer, B., Nordén, L., Riordan, R., 2015. Trading fast and slow: Colocation
and liquidity. The Review of Financial Studies 28, 3407-3443

Brogaard, J., Hendershott, T., Riordan, R., 2014. High-frequency trading and price discovery.
The Review of Financial Studies 27, 2267-2306

41



Brogaard, J., Pan, J., 2022. Dark pool trading and information acquisition. The Review of
Financial Studies 35, 2625-2666

Brunnermeier, M.K., 2005. Information leakage and market efficiency. The Review of
Financial Studies 18, 417-457

Budish, E., Cramton, P., Shim, J., 2015. The high-frequency trading arms race: Frequent batch
auctions as a market design response. The Quarterly Journal of Economics 130, 1547-
1621

Cao, L., 2022. Ai in finance: challenges, techniques, and opportunities. ACM Computing
Surveys (CSUR) 55, 1-38

Chakrabarty, B., Comerton-Forde, C., Pascual, R., 2023. Identifying High Frequency Trading
Activity without Proprietary Data. Available at SSRN 4551238

Chakravarty, S., Jain, P., Upson, J., Wood, R., 2012. Clean sweep: Informed trading through
intermarket sweep orders. Journal of Financial and Quantitative Analysis 47, 415-435

Cole, B., Daigle, J., Van Ness, B., Van Ness, R., 2015. Do high frequency traders care about
earnings announcements? An analysis of trading activity before, during, and after regular
trading hours. The Handbook of High Frequency Trading. San Diego: Academic Press.
Elsevier Inc, 255-270

Conrad, J., Wahal, S., Xiang, J., 2015. High-frequency quoting, trading, and the efficiency of
prices. Journal of Financial Economics 116, 271-291

Easley, D., De Prado, M.L., O’Hara, M., 2011. The microstructure of the Flash Crash. Journal
of Portfolio Management 37, 118-128

Easley, D., Lopez de Prado, M., O’Hara, M., Zhang, Z., 2021. Microstructure in the machine
age. The Review of Financial Studies 34, 3316-3363

Ettredge, M.L., Kwon, S.Y., Smith, D.B., Zarowin, P.A., 2005. The impact of SFAS No. 131
business segment data on the market's ability to anticipate future earnings. The
Accounting Review 80, 773-804

Foucault, T., 2016. Where are the risks in high frequency trading? Financial Stability Review
20, 53-67

Foucault, T., Kozhan, R., Tham, W.W., 2017. Toxic arbitrage. The Review of Financial Studies
30, 1053-1094

Genuer, R., Poggi, J.-M., Tuleau-Malot, C., Villa-Vialaneix, N., 2017. Random forests for big
data. Big Data Research 9, 28-46

Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Machine learning 63,
3-42

42



Goldstein, M., Kwan, A., Philip, R., 2023. High-frequency trading strategies. Management
Science 69, 4413-4434

Hagstromer, B., Nordén, L., 2013. The diversity of high-frequency traders. Journal of Financial
Markets 16, 741-770

Hasbrouck, J., 2018. High-frequency quoting: Short-term volatility in bids and offers. Journal
of Financial and Quantitative Analysis 53, 613-641

Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H., 2009. The elements of statistical
learning: data mining, inference, and prediction. Springer.

Hendershott, T., Jones, C.M., Menkveld, A.J., 2011. Does algorithmic trading improve
liquidity? The Journal of Finance 66, 1-33

Hirschey, N., 2021. Do high-frequency traders anticipate buying and selling pressure?
Management Science 67, 3321-3345

Ho, T.K., 1995. Random decision forests. In: Proceedings of 3rd international conference on
document analysis and recognition, pp. 278-282. IEEE

Jones, C.M., 2013. What do we know about high-frequency trading? Columbia Business
School Research Paper

Khapko, M., Zoican, M., 2021. Do speed bumps curb low-latency investment? Evidence from
a laboratory market. Journal of Financial Markets 55, 100601

Klein, O., 2020. Trading aggressiveness and market efficiency. Journal of Financial Markets
47,100515

Kwan, A., Philip, R., Shkilko, A., 2021. The conduits of price discovery: A machine learning
approach.

Lee, C.M., Radhakrishna, B., 2000. Inferring investor behavior: Evidence from TORQ data.
Journal of Financial Markets 3, 83-111

Lee, C.M., Ready, M.J., 1991. Inferring trade direction from intraday data. The Journal of
Finance 46, 733-746

Li, D.-C., Fang, Y.-H., Fang, Y.F., 2010. The data complexity index to construct an efficient
cross-validation method. Decision Support Systems 50, 93-102

Li, S., Wang, X., Ye, M., 2021a. Who provides liquidity, and when? Journal of financial
economics 141, 968-980

Li, S., Ye, M., Zheng, M., 2021b. Financial regulation, clientele segmentation, and stock
exchange order types. National Bureau of Economic Research

Lundholm, R., Myers, L.A., 2002. Bringing the future forward: the effect of disclosure on the

returns-earnings relation. Journal of accounting research 40, 809-839

43



Malceniece, L., Malcenieks, K., Putnins, T.J., 2019. High frequency trading and comovement
in financial markets. Journal of Financial Economics 134, 381-399

Menkveld, A.J., 2013. High frequency trading and the new market makers. Journal of Financial
Markets 16, 712-740

Menkveld, A.J., 2016. The economics of high-frequency trading: Taking stock. Annual Review
of Financial Economics 8, 1-24

Menkveld, A.J., Zoican, M.A., 2017. Need for speed? Exchange latency and liquidity. The
Review of Financial Studies 30, 1188-1228

Moews, B., Davé, R., Mitra, S., Hassan, S., Cui, W., 2021. Hybrid analytic and machine-
learned baryonic property insertion into galactic dark matter haloes. Monthly Notices of
the Royal Astronomical Society 504, 4024-4038

Nimalendran, M., Rzayev, K., Sagade, S., 2024. High-frequency trading in the stock market
and the costs of options market making. Journal of Financial Economics 159, 103900

O'Hara, M., 2003. Presidential address: Liquidity and price discovery. The Journal of Finance
58, 1335-1354

Parker, W.S., 2013. Ensemble modeling, uncertainty and robust predictions. Wiley
interdisciplinary reviews: Climate change 4, 213-223

Probst, P., Boulesteix, A.-L., 2018. To tune or not to tune the number of trees in random forest.
Journal of Machine Learning Research 18, 1-18

Rzayev, K., Ibikunle, G., 2019. A state-space modeling of the information content of trading
volume. Journal of Financial Markets 46, 100507

Rzayev, K., Ibikunle, G., Steffen, T., 2023. The market quality implications of speed in cross-
platform trading: Evidence from Frankfurt-London microwave. Journal of Financial
Markets 66, 100853

Shkilko, A., Sokolov, K., 2020. Every cloud has a silver lining: Fast trading, microwave
connectivity, and trading costs. The Journal of Finance 75, 2899-2927

Stiglitz, J.E., 2014. Tapping the brakes: Are less active markets safer and better for the
economy? In: Federal Reserve Bank of Atlanta 2014 Financial Markets Conference
Tuning Financial Regulation for Stability and Efficiency, April

Van Kervel, V., Menkveld, A.J., 2019. High-frequency trading around large institutional
orders. The Journal of Finance 74, 1091-1137

Weller, B.M., 2018. Does algorithmic trading reduce information acquisition? The Review of

Financial Studies 31, 2184-2226

44



Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng,
A., Liu, B., Yu, P.S., 2008. Top 10 algorithms in data mining. Knowledge and
information systems 14, 1-37

Yang, L., Zhu, H., 2020. Back-running: Seeking and hiding fundamental information in order
flows. The Review of Financial Studies 33, 1484-1533

Ye, M., Yao, C., Gai, J., 2013. The externalities of high frequency trading. WBS Finance Group
Research Paper

Zhang, Y., Lee, J., Wainwright, M., Jordan, M.1., 2017. On the learnability of fully-connected
neural networks. In: Artificial Intelligence and Statistics, pp. 83-91. PMLR

45



Figure 1
Feature importance plot.
This figure shows the feature importance of each input variable in terms of how relevant it is to the construction of the model, meaning how much each feature contributes to
the predictions made. Using the Gini impurity in Equation 1, importance values are calculated through the mean decrease and standard deviation in node impurity for tree-
based models as the normalized total reduction of the measurement as a result of said feature.
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Figure 2
Partial dependence plots of ML-generated HFT proxies on selected variables.
This figure shows the marginal effect that input variables have on model predictions, and whether these relationships are nonlinear. Predictions are marginalized over the

distribution of input variables resulting in a function that includes other variables and depends solely on the features of interest. This provides the average marginal effect on

predictions for given values of these features.
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Figure 3

HFT around earnings announcements

This figure illustrates the evolution of ML-generated HFT measures with their 95% confidence interval
surrounding scheduled events, specifically earnings announcements. The event window spans 10 days before and
after the announcement dates, which are sourced from the I/B/E/S database. The analysis encompasses all U.S.
listed common stocks, with the sample period extending from 2010 to 2023.
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Figure 4
HFT around M&A announcements
This figure illustrates the evolution of ML-generated HFT measures with their 95% confidence interval

surrounding unscheduled events, specifically mergers and acquisitions (M&A) announcements. The event
window spans 10 days before and after the announcement dates, which are sourced from the Thomson Reuters
Securities Data Company (SDC) database. The analysis encompasses all U.S. listed common stocks, with the
sample period extending from 2010 to 2023.

Panel A: HF Ti{‘;”“'s around M&A announcements.

HFT Supply Fraction around MAD

0.230
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=
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=
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£ 0220
0.215

-10 -5 0 5 10
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——— Mean O 95% Confidence Interval

Panel B: HF Ti{';”“'D around M&A announcements.

HFT Demand Fraction around MAD

0.350

0.345

HFT Demand Fraction

0.340

0.335
-10 -5 0 5 10

Day around announcement
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Table 1

Input and Output Variables in the ML Model Training Process

This table presents the variables used to train the ML model, including their notation, descriptions, and data sources. Panel A contains output variables from NASDAQ HFT
data. Panel B details input variables derived from the TAQ database, with variable labels matching the WRDS TAQ Data Manual for easy reference.

Variable Description Data source
Panel A: Output variables used in the ML model.
NHF Tif’t Liquidity-demanding HF T activities for stock i in day t is computed as the daily number of shares traded by NASDAQ HFT

liquidity - demanding HFTs (HH and HN) divided by the total number of shares (HH, HN, NH, and NN)
trading in day ¢.

NHF Ti,st Liquidity-supplying HF T activities for stock i in day t is computed as the daily number of shares traded by NASDAQ HFT
liquidity - supplying HFTs (HH and HN) divided by the total number of shares (HH, HN, NH, and NN)
trading in day ¢.

Panel B: Input variables (features) used in the ML model.

AVG_PRICE_M;, Average trade price during market hours (Open to Close) for stock i in day t. TAQ

RET_MKT_M;, Open to close return for stock i in day t is computed as the log return of the official opening price over the TAQ
official closing price.

TOTAL_TRADE;, The total number of trades for stock i in day t. TAQ
NBOQTY_BEFORE_CLOSE; The best offer size of the last quote before market close for stock i in day t. TAQ
NBBQTY_BEFORE_CLOSE;, The best bid size of the last quote before market close for stock i in day t. TAQ
TOTAL_DOLLAR_M;, The total trade value in dollars during market hours for stock i in day t. TAQ
ISO_DOLLAR; The sum of intermarket sweep order trade dollar value (during market hours) for stock i in day t. TAQ
QUOTEDSPREAD_PERCENT_TW;, The time-weighted percentage quoted spread (during market hours) for stock i in day t. The quoted spread TAQ

is calculated as the difference between ask and bid prices for each transaction divided by the mid-price (the
average of ask and bid prices).

BESTOFRDEPTH_DOLLAR_TW; The time-weighted best offer dollar depth (during market hours) for stock i in day t is determined based on TAQ
the size of the best ask price.

(continued)
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BESTBIDDEPTH _DOLLAR_TW,,
BESTOFRDEPTH _SHARE TW;,
BESTBIDDEPTH _SHARE _TW;,

EFFECTIVESPREAD_PERCENT_DW; .

PERCENTREALIZEDSPREAD_LR_DW,

PERCENTPRICEIMPACT _LR_DW; ,

BS_RATIO VOL;,

TSIGNSQRTDVOL1,;,

IVOL_Q;

The time-weighted best bid dollar depth (during market hours) for stock i in day t is determined as the size
of the best bid price.

The time-weighted best offer share depth (during market hours) for stock i in day t is determined based on
the size of the best ask price.

The time-weighted best bid share depth (during market hours) for stock i in day t is determined based on the
size of the best bid price.

The dollar value-weighted percentage effective spread for stock i in day t. The effective spread is calculated
using the following equation: Ef fective Spread = 2D, (P, — M, )/M,,, where k denotes transaction, D,
denotes the sign of transaction (-1 for sale and +1 for buy), P, is the transaction price, and M, is the prevailing
mid-price for each transaction. Lee and Ready (1991) algorithm is used for trade classification.

The dollar value-weighted percentage realized spread for stock i in day t. The realized spread is calculated
using the following equation: Realized Spread = 2Dy (P, — My,5)/M;, where M, s is the bid-ask mid-
point five minutes after the kth trade, and all other variables are as previously defined. Lee and Ready (1991)
algorithm is used for trade classification.

The dollar value-weighted percentage price impact for stock i in day t. The price impact is calculated using
the following equation: Percent Price Impact = 2D, (My,s — My)/M,, where all variables are as
previously defined. Lee and Ready (1991) algorithm is used for trade classification.

The absolute percentage order imbalance for stock i in day ¢ is calculated as the absolute value of buy volume
minus sell volume divided by the total trade volume. Lee and Ready (1991) algorithm is used for trade
classification.

The lambda (price impact coefficient) with intercept for stock i in day t is calculated using the following
equation: Ln# = a + A+ SSqrtDvol + €, where SSqrtDvol = Sgn(X5_3,0 BuyDollar —

i,s—300

S_s00SellDollar) X \[|X5_s00 BuyDollar — ¥3_50,SellDollar |, where M ; is the mid-price for stock
i at second s.

The quote-based intraday volatility for stock iin day t is calculated using the following equation:

»5_.(Ret; s—Ret, 5)? M;
== % where Ret; ¢ = Ln—=-

Intraday Volatility = - =
- is-1

and M; ; is the mid-price for stock i at

second s.

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ

(continued)
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HINDEX;,

VAR_RATIO3;,

TOTAL_DV_RETAIL;,
BS_RATIO_RETAIL_VOL;,

TOTAL_DV_INST20K;,

BS_RATIO_INST20K_VOL;,

The Herfindahl index calculated across 30-minute time units for stock i in day t is calculated using the
5529° S=q (PiXSHR)*
(R38O R, PrxSHR)?

following equation: HIndex = where SHR,, is the shares of trade for transaction k.

The variance ratio for stock iin day t is calculated using the following equation: Variance Ratio =
Var(Retsgot)

SxVar(Retecs) 1|, where Var (Ret3q0;) is the variance of 5-minute log returns.

The total dollar value of retail trades for stock i in day ¢. Retail trades are identified by using the methodology
described in Boehmer et al. (2021Db).

The absolute percentage order imbalance for retail trading volume for stock i in day t. Retail trades are
identified by using the methodology described in Boehmer et al. (2021b).

The total dollar value of $20,000 institutional trades for stock i in day t. $20,000 cutoff is based on Lee and
Radhakrishna (2000).

The absolute percentage order imbalance for $20,000 institutional trades’ trading volume for stock i in day
t. $20,000 cutoff is based on Lee and Radhakrishna (2000).

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ
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Table 2

Regression Variables and Summary Statistics
This table provides summary statistics and definitions of variables used in our regression analyses. Variable names in the first column are followed by their measurement units
in parentheses. For variables used in multiple regressions with different frequencies (daily, quarterly, etc.), we report summary statistics corresponding to their first appearance
in our analyses. All variables are winsorized at the 1st and 99th percentiles.

Variable Definition Mean Std Min p.25 p-50 p.75 Max
H FT,"’t’ LD The liquidity-demanding HFT activity for stock i on day ¢, estimated using the 0.316  0.112  0.025 0222  0.335 0.414 0.602
b ML model outlined in Section 3.
H FT-IVtIL'S The liquidity-supplying HFT activity for stock i on day ¢, estimated using the 0.208  0.101  0.036  0.131  0.174 0.259  0.626
b ML model outlined in Section 3.
Volatility; , Daily volatility for stock i on day ¢, measured as the standard deviation of 0.008  0.018 0.000  0.000 0.001  0.007 0.123
(1/00,000) transaction-level returns.
Spread; (%) Daily average of transaction-level spreads for stock i on day ¢, where each 0.142  0.154 0.012  0.037 0.090 0.189  0.885
transaction-level spread is calculated as (ask price - bid price)/(0.5 x (ask price
+ bid price)).
InvPrice;, The inverse of stock price for stock i on day . 0.039  0.050 0.001 0.013 0.024 0.047 0.344
Volume; , Daily trading volume in dollars for stock i on day ¢. 2.614 6.305 0.007 0.070 0.330 2.556 47.392
($°000,000,00)
NLAO; ; (000) The number of latency arbitrage opportunities for stock i on day ¢, identified 0.068  0.169 0.001  0.006 0.017 0.047 1.211
using the methodology detailed in Section 4.3.
Flick; . (0) Quote volatility for stock i on day 7, measured as the daily average of standard 6.942  42.24  0.000 0.009 0.021 0.086  365.523
deviations of quote midpoints calculated over 100 ms intervals.
OLV;, Daily average of trades smaller than 100 shares for stock i on day ¢. 3.040 1247 0.000 0.000 0.000 1.000 80.000
Quotelnt;  (000,000) Daily count of changes in best quotes or quote depth for stock i on day . 0.191 0.264 0.002 0.031 0.059 0.253 2775
QT; ¢ The ratio of quoted shares to traded shares for stock i on day ¢. 15.82 1623 2.19 5.88 9.51 18.71  85.70
MG; ; (000,000) The total number of messages (trade and quote) for stock i on day . 2111 2.864 0.078 0.332 0.643 2.853  12.637
JUMP; q Information acquisition proxy for stock 7 in quarter ¢, measured as the ratio of 0.517  0.427 -0.543 0.227 0.510 0.794 1.663
cumulative abnormal returns over [-1, 1] to cumulative abnormal returns over
[-21, 1] around earnings announcements.
MValue; q Market value for stock 7 in quarter g, calculated as the average of daily market 0.567  1.652  0.001  0.024 0.089 0.330 12.474
($°000,000,000) values over [-21, -1] around earnings announcements, where daily market
T value is closing price times shares outstanding.
0l BZOki'q Institutional order imbalance for stock i in quarter ¢, measured as the price 0.351  0.183  0.050 0.200 0.333 0.494 0.763

impact of trades exceeding $20,000 over [-21, -1] around earnings
announcements, obtained from TAQ.
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CTiq

The natural logarithm of the cancel-to-trade ratio for stock 7 in quarter ¢, where
the ratio is calculated as the average of daily (cancel messages/trade messages)
over [-21, -1] around earnings announcements, obtained from MIDAS
database.

0.507  0.540

-0.548

0.150

0.462

0.810

2.227

OLR;,

The natural logarithm of the odd-lot ratio for stock 7 in quarter ¢, where the
ratio is calculated as the average of daily proportions of trades below 100
shares over [-21, -1] around earnings announcements, obtained from MIDAS
database.

1.202  0.664

-0.430

0.777

1.288

1.735

2212

TO;q

The natural logarithm of the trade-to-order ratio for stock 7 in quarter g, where
the ratio is calculated as the average of daily (executed shares/submitted
shares) over [-21, -1] around earnings announcements, obtained from MIDAS
database.

-1.064 0.639

-2.972

-1.450

-1.017

-0.628

0.194
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Table 3

Parameter optimization results

The table lists the arithmetic mean and standard deviation for R? values across 10 iterations for different parameter
combinations regarding the number of samples requires to split a tree node and the number of trees determining
the ensemble size. Results are ranked by the Mean column.

Rank Mean Std. Split samples Ensemble size
1 0.814442 0.008260 5 640
2 0.813941 0.008360 5 320
3 0.813713 0.008455 5 160
4 0.812587 0.008609 5 80
5 0.810152 0.008016 5 40

60 0.659040 0.027015 640 160
61 0.658566 0.022346 640 80
62 0.657760 0.022598 640 320
63 0.655796 0.023405 640 10
64 0.654791 0.027320 640 5
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Table 4

Machine Learning comparison

The table lists the arithmetic mean and standard deviation for R? values across 10 iterations for support vector
regression (SVR), feed-forward artificial neural networks (ANN), random forests for multi-model (RF-MM) and
multi-target (RF) setups, and extremely randomized trees for multi-model (ET-MM) and multi-target (ET) setups.

Results are inversely ranked by the Mean column.

Method Mean Std.
SVR 0.684 0.058
ANN 0.783 0.0229

RF-MM 0.784 0.055

RF 0.790 0.043

ET-MM 0.804 0.036

ET 0.805 0.035
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Table 5

Impact of Exchange Technological Changes on HFT Activity

This table examines how our ML-generated HFT measures respond to two technological changes: NASDAQ’s
reduced data dissemination latency and Amex’s speed bump implementation. We estimate the following
difference-in-difference models:

HFT"P = a; + B, + viPosti + Yoy 85CE + &, (5.1
HFT{"® = a; + B, + y,Post;, + Yho1 65.CE + & (5.2)
HFT;;'L‘D =a; + B+ v1Post; x Amex;, + Yo, 65C + & (5.3)
HFTL-II‘;'L‘S =a; + B+ yvoPost;, x Amex;, + Yio1 655CS + & (5.4)

where HF ﬂf‘ZL’D and HF Ti{‘fL'S represent the ML — generated liquidity — demanding and — supplying HFT activities
for stock i on day t. a; and f3; capture stock and day fixed effects, respectively. For the NASDAQ upgrade analysis
(Models 5.1 and 5.2), Post;, equals 1 after October 10, 2011, for NASDAQ-listed stocks with tickers A-B, and
after October 17, 2011, for other NASDAQ stocks. NYSE and Amex stocks serve as control groups in these
models. For the Amex speed bump analysis (Models 5.3 and 5.4), Post; , equals 1 after July 24,2017, and Amex;
equals 1 for Amex-listed stocks. NYSE and NASDAQ stocks serve as control groups in these models. Control
variables (Ci’ft) include daily volatility (Volatility; ., standard deviation of transaction-level returns), relative
quoted spread (Spread;,, daily average of (ask-bid)/(0.5%(ask+bid) for each transaction), inverse price
(InvPrice;;), and dollar trading volume (Volume;,). The analysis uses 10-working day windows around
implementation dates. Panel A reports results for the NASDAQ upgrade and Panel B for the Amex speed bump.
Standard errors are double-clustered by stock and day, with t-statistics in brackets. *, ** and *** indicate
significance at 10%, 5%, and 1%. R? values are within-R?.

Panel A: NASDAQ upgrade Panel B: Amex speed bump
) (i) (iit) (iv)
HFT}"P HFT"® HFT/"? HFTY"™S
Post; . 0.002** 0.002**
(2.12) (2.10)
Post;, x Amex; -0.005%* -0.007***
(-2.34) (-3.31)
Volatility; 0.013** 0.000 0.001 0.001
(2.19) (0.07) (1.29) (1.33)
Spread; -0.066*** -0.024 %% -0.015%** -0.006***
(-12.58) (-5.58) (-10.96) (-6.05)
InvPrice;, -0.151*** 0.037 -0.026 -0.023*
(-3.08) (0.92) (-1.57) (-1.96)
Volume; ; 0.001 0.020%** 0.001** 0.005%***
(1.30) (17.75) (2.25) (4.24)
Stock and Day FE Yes Yes Yes Yes
N obs. 43,234 43,234 45,530 45,530
R? 5% 11% 1.3% 3.5%
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Table 6

HFT Response to Latency Arbitrage Opportunities

This table examines how our ML-generated HFT measures respond latency arbitrage opportunities using the
following OLS models:

4
HFT}"? = a; + B + v NLAO; + Zk_la,.’ftci’ft + &

4
HFT/{"S = a; + B, + y,NLAO,, + Zk_lai’ftci’ft + g

where HF ﬂf‘ZL’D and HF Ti{‘fL'S represent the ML — generated liquidity — demanding and — supplying HFT activities
for stock i and day t. a; and B, capture stock and day fixed effects, respectively. NLAO; ; is the number of latency
arbitrage opportunities, identified using the methodology detailed in Section 4.3. Control variables (C, i’ft) include
daily volatility (Volatility; ., standard deviation of transaction-level returns), relative quoted spread (Spread; ,,
daily average of (ask-bid)/(0.5%(ask+bid) for each transaction), inverse price (InvPrice;.), and dollar trading
volume (Volume; ;). Columns (i) and (ii) present the results for HF TZ‘;’L’D and HF ’I"l-l“fL’S, respectively. The sample
consists of 120 randomly selected NASDAQ- and NYSE-listed firms. Standard errors are double-clustered by

stock and day, with t-statistics in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. R? values
are within-R?.

) (i)
HFTMN"P HFT/"®
NLAO; , 0.018%** -0.020%*
(3.78) (-2.02)
Volatility; , -0.302% -0.353 %%+
(-5.91) (-4.50)
Spread; -0.069%** -0.033**
(-4.66) (-2.09)
InvPrice;, -0.390*** 0.428%**
(-6.04) (7.98)
Volume; -0.002%*** 0.003***
(-3.81) (7.96)
Stock and Day FE Yes Yes
N obs. 246,139 246,139
R? 17% 12%

58



Table 7

Comparative Analysis of HFT Measures

This table evaluates our ML-generated HFT measures against alternative proxies using the following models:

NHFTS, = a; + B + viHFT/{"® + y,Flick;; + ys0LV;, + v4Quotelnt;, + ysQTi; + Y6MGy, + &,

NHFTF, = a; + Bc + viHFT)"? + y,Flick;, + y30LV;, + v4Quotelnt;, + ysQT; . + veMG;, + €

where NHF Tif)t and NHF Tift are NASDAQ’s liquidity-demanding and -supplying HFT measures, and HF T%L‘D and HF TL.IIVtIL’S are our ML-generated proxies, trained on January-
June 2009 data) and alternative proxies from TAQ: quote volatility (Flick; ., average standard deviation of quote midpoints over 100 ms intervals), OLV; , (OLV; ;, sum of sub-
100 share trades), quote intensity (Quotelnt; ., count of quote/depth changes), quote-to-trade ratio (QT; ., quoted shares/traded shares), and the number of messages (MG; ).
All dependent variables are standardized. The analysis presents results for liquidity-supplying HFT in Panels A and C, while Panels B and D focus on liquidity-demanding
HFT. Panels A and B incorporate both stock and day fixed effects, whereas Panels C and D employ only day fixed effect. The sample covers July-December 2009 for 120
randomly selected NASDAQ- and NYSE-listed firms with NASDAQ HFT data. Standard errors are double-clustered by stock and day, with t-statistics in brackets. *, **, and
##% jndicate significance at 10%, 5%, and 1%. R? values are within-R2.

Panel A: NHFT;,

H FTiI’\;IL,S
Flick;,

0LV,
Quotelnt; ,

QT;.

MG;,

Stock and Day FE

N obs.
RZ

(1) (i1) (iii) (iv) (v)
0.104***
(8.52)
0.002*
(1.79)
0.001
(0.84)
0.015%*
(2.26)
0.008**
(2.10)
Yes Yes Yes Yes Yes
14,238 14,238 14,238 14,238 14,238
3% 0.1% 0% 0.4% 0.2%

(vi)

(vii)

0.021***
3.21)
Yes
14,238
0.7%

0.096***
(7.52)
0.001
(1.00)
0.001
(0.80)

-0.020%**
(-3.16)

0.008**
(2.37)

0.032%%*

(3.10)
Yes
14,238
3.3%
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Panel B: NHFT/,

) (i1) (iii) (iv) ) (vi) (vii)
HFTL.”‘gL'D 0.068%** 0.083%**
(3.70) (4.38)
Flick;, -0.003*** -0.003***
(-3.27) (-3.24)
OLV;, -0.000 -0.000
(-0.31) (-0.07)
Quotelnt; -0.002 0.030%**
(-0.42) (2.60)
QT;: 0.016%** 0.019%**
(3.34) (3.91)
MG;, -0.006 -0.040%***
(-1.16) (-2.82)
Stock and Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 0.8% 0.1% 0% 0.5% 0.5% 0.3% 1.4%
Panel C: NHFT,
(@) (i) (iii) (iv) ) (vi) (vii)
1!-11:71.’,‘;“'S 0.246%** 0.239%**
(38.28) (23.27)
Flick;, -0.009%** 0.001
(-2.69) (0.06)
OLV;, -0.004 0.002*
(-0.91) (1.68)
Quotelnt;, 0.140%** -0.006
(14.02) (-0.62)
QT;, 0.084*** 0.005
(5.41) (1.12)
MG, 0.144%** 0.010
(15.97) (0.79)
Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 74% 0.3% 0% 51% 15% 53% 74%
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Panel D: NHFT},

HFTL.I’\;IL,D
Flick;,
OLV;,
Quotelnt;
QT

MG,

Day FE

N obs.
RZ

(M)

(i)

(iii)

(iv) ™) (vi)

0.423%%*
(23.23)

Yes
14,238
50%

-0.003
(-0.41)

Yes
14,238
0.1%

0.000
(0.24)

Yes
14,238
0%

(vii)

0.091***
(7.92)
0.021**
(2.04)
0.092%**
(8.37)
Yes Yes Yes
14,238 14,238 14,238
23% 1.0% 24%

0.383%**
(17.93)
-0.003
(-0.93)

0.002%**
(1.99)
0.013
(0.92)

0.014***
(2.69)

0.015

(0.94)
Yes

14,238
54%
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Table 8
HFT Activity and Information Acquisition — Jump ratio
This table examines how HFT activity affects information acquisition using the following OLS model:

4
JUMP; g = a; + B + viHFT[3"? + v, HFT2" + Zk_l(si’chi’fq + &

where JUMP; ; measures information acquisition for stock i as the ratio of cumulative abnormal returns over [-1,
1] to cumulative abnormal returns over [-21, 1] around quarterly earnings announcements (g). HF TiIIZL‘D and
HF T;ZL'S are ML-generated liquidity-demanding and liquidity-supplying HFT activities, measured as averages of
daily values over [-21, -1] around earnings announcements. Models include stock (@;) and month (£, ;) fixed
effects, respectively. Control variables (C, i’fq) all measured as averages of daily values over [-21, -1] around
earnings announcements, include volatility (Volatility;,), relative quoted spread (Spread; ), market value
(MValue; 4, price times shares outstanding), and institutional order imbalance (OIB20k; 4, price impact of trades
over $20,000 from TAQ). The sample includes all U.S.-listed common stocks from 2010 to 2023. Standard errors
are double-clustered by stock and quarter, with t-statistics in brackets. *, **, and *** indicate significance at 10%,
5%, and 1%. R? values are within-R?.

JUMP; ,
HFT¢"" 0.178%**
(4.57)
HFE{‘;L'S -0.133 %%
(-2.71)
Volatility; , -0.048%*x*
(-2.87)
Spread, 4 -0.106%**
(-6.45)
MValue; , -0.009%**
(-3.52)
OIB20k; 4 0.132%**
(7.26)
Stock and Month FE Yes
N obs. 49,515
R? 0.4%
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Table 9

Comparing ML-Generated HFT Measures with Weller (2018) Measures

This table analyzes the relationship between our ML-generated HFT measures and Weller’s (2018) HFT proxies
using the following OLS models:

4

CTiq = a; + Bg + ViHFTG"" + v, HFTZ" + Zk_la,.’chi’fq + &y
4

OLRyq = a; + PBmg + VAHFT)"? + v, HFT/M® + Zk_ldi’chi’fq + &y
4

TOiq = a; + Bmgq + VAHFTe"" + v, HFT/M + Zk_la,.’chi’fq + &

The dependent variables are Weller’s (2018) HFT proxies obtained from the MIDAS database: CT;, (natural
logarithm of cancel-to-trade ratio), OLR;, (natural logarithm of odd-lot ratio), and TO; 4 (natural logarithm of
trade-to-order ratio), where each ratio is calculated as the average of daily values over [-21, -1] around earnings
announcements. The key independent variables are HF TZZL'D and HF Ti{ZL’S are ML-generated liquidity-demanding
and liquidity-supplying HFT activities, measured as averages of daily values over [-21, -1] around earnings
announcements. Models include stock (@;) and month (8,, ;) fixed effects, respectively. Control variables (Ci’fq)
all measured as averages of daily values over [-21, -1] around earnings announcements, include volatility
(Volatility; ,), relative quoted spread (Spread; ,), market value (MValue; 4, price times shares outstanding), and
institutional order imbalance (0IB20k; 4, price impact of trades over $20,000 from TAQ). The sample includes
all U.S.-listed common stocks from 2012 to 2023. Standard errors are double-clustered by stock and quarter, with
t-statistics in brackets. *, ** and *** indicate significance at 10%, 5%, and 1%. R? values are within-R?.

(1) (i) (i)
CTi,q OLRl-,q TOi,q
HFEIZL'D 0.839%** 2.714%%* -1.208%%*
' (10.64) (24.76) (-15.71)
HFTiIZL'S -1.133%%* -2.343%%* 1.34Q%**
' (-12.01) (-26.72) (13.38)
Volatility; , 0.036 -0.476%** 0.492 %%
(0.74) (-11.05) (10.05)
Spread, 4 -0.005 0.727%** -0.190%%**
(-0.17) (12.03) (-5.76)
MValue; , 0.050%** 0.120%** -0.071%%*
(7.52) (11.74) (-8.63)
0IB20k; , 0.152%** -0.111%%* 0.063*
(5.24) (-3.22) (1.81)
Stock and Month FEs Yes Yes Yes
N obs. 43,091 43,091 43,091
R? 2% 19% 4%
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Table 10
HFT Activity and Information Acquisition - FERC
This table examines how HFT activity affects information acquisition using the following model:

Return;, = a; + 4 + Z}lz_l(ynEarningi,qun + Oy Earning; g, * HFTZZL'D +
OnEarning; g n * HFTL-IZL'S) + leFﬂ{'gL‘D + pZHFTiIZL‘S + psReturn; 4,1 +
paReturn; oy + Yo 65,Cl +€iq

where Return, , is quarterly stock returns for firm i in quarter q, measured as the percentage change in closing
prices between quarters ¢ — 1 and q. Earning; 44, denotes quarterly earnings (net income) normalized by the
market value of equity at the start of quarter g + n. The subscript n ranges from -1 to 1. HF TZZ’“D and HF TL.I‘ZL‘S
are ML-generated liquidity-demanding and liquidity-supplying HF T activities, measured as the quarterly averages
of daily values. Control variables (Ci’_‘q) all measured as quarterly averages of daily values, include volatility
(Volatility; ,), relative quoted spread (Spread; ,), market value (MValue; 4, price times shares outstanding), and
institutional order imbalance (OIB20k; 4, price impact of trades over $20,000 from TAQ). The sample includes
all U.S.-listed common stocks from 2010 to 2023. Standard errors are double-clustered by stock and quarter, with
t-statistics in brackets. *, ** and *** indicate significance at 10%, 5%, and 1%. R? values are within-R?.

Return; 4
Earning; 441 * HFTL.IZL'D -2.018*#*
(4.56)
Earning; g1 * HFTL-I_ZL'S 2.676%**
(5.25)
HFTq"" -0.059
(-1.59)
HFEI,ZL'S 0.010
(0.08)
Earning; g1 0.573**
(9.67)
All controls as defined in the model Yes
Stock and Quarter FE Yes
N obs. 157,343
R? 4%
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Table 11

HFT Activity and Information Acquisition Using NASDAQ HFT Data
This table replicates the analyses from Tables 9 and 11 using NASDAQ’s original HFT measures instead of our
ML-generated proxies. NHF Tif)t and NHF Tl-,st are NASDAQ’s liquidity-demanding and -supplying HFT measures.
The sample consists of 120 randomly selected stocks for which NASDAQ provided HFT data in 2009. All other
specifications, including variable definitions, measurement periods, control variables, and fixed effects, remain

identical to those in Tables 9 and 11.

NHFT,?
NHFTS,
Earning; 441 * NHFT,
Earning; g4, * NHFT;},
Controls

Stock and Month FEs
N obs.

RZ

(1) (i1)
JUMP, Return; ,
0.997
(0.52)
-0.903
(-0.56)
0.521
(0.06)
-3.246
(-0.59)
As in Table 9 As in Table 11
Yes Yes
466 401
0.7% 40%
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Table 12

HFT Activity and Information Acquisition: Analysis of 2010-2012 Period

This table replicates the analyses from Tables 9 and 11 using data from 2010 to 2012, a period immediately
following our ML model’s training sample (2009). All other specifications, including variable definitions,
measurement periods, control variables, and fixed effects, remain identical to those in Tables 9 and 11.

ML,D
HFT

MLS
HFT,

. ML,D
Earning; q+1 * HFT;

; ML,S
Earning; 441 * HFT;

Controls
Stock and Month FEs
N obs.

RZ

) (ii)
JUMP, Return; ,
0.114%**

(2.59)
-0.101**
(-2.10)
-3.982%%*
(-3.41)
3.666%**
(2.81)
As in Table 9 Asin Table 11
Yes Yes
9,915 30,048
0.4% 5%
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Introduction

This online appendix provides supplementary results to the findings presented in

Ibikunle et al. (2025). The content is as follows:

e Figure OA.1: Replication of Figure 3 using unscaled HFT measures.
e Figure OA.2: Replication of Figure 4 using unscaled HFT measures.
e Table OA.1: Replication of Table 5 using unscaled HFT measures.

e Table OA.2: Replication of Table 6 using unscaled HFT measures.

o Table OA.3: Replication of Table 7 using unscaled HFT measures

o Table OA.4: Replication of Table 8 using unscaled HFT measures

o Table OA.5: Replication of Table 10 using unscaled HFT measures



Figure OA.1
HFT around earnings announcements
This figure illustrates the evolution of ML-generated unscaled HFT measures (UHF TZ‘;’L’S and UHF TiI;IL'D ) with

their 95% confidence interval surrounding scheduled events, specifically earnings announcements. The event
window spans 10 days before and after the announcement dates, which are sourced from the I/B/E/S database.
The analysis encompasses all U.S. listed common stocks, with the sample period extending from 2010 to 2023.
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Figure OA.2
HFT around M&A announcements
This figure illustrates the evolution of ML-generated unscaled HFT measures (UHF 7}{‘?’5 and UHF TiI;IL'D ) with

their 95% confidence interval surrounding unscheduled events, specifically mergers and acquisitions (M&A)
announcements. The event window spans 10 days before and after the announcement dates, which are sourced
from the Thomson Reuters Securities Data Company (SDC) database. The analysis encompasses all U.S. listed
common stocks, with the sample period extending from 2010 to 2023.

Panel A: UHF Ti{‘;”“’s around M&A announcements.
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Table OA.1

Impact of Exchange Technological Changes on HFT Activity

This table examines how our ML-generated unscaled HFT measures respond to two technological changes:
NASDAQ’s reduced data dissemination latency and Amex’s speed bump implementation. We estimate the
following difference-in-difference models:

UHFT{"" = a; + B, + y,1Posti, + gy 65CE + & (5.1
UHFT{{"® = a; + B, + voPost, + Yhey 65,CE + &y (5.2)
UHFT{"" = a; + B, + y,Post;,  Amex;, + Y=y 65,Cl + &y (5.3)
UHFT;'ZLS =a;+ B + yoPost;, » Amex;, + Yi_1 65CE + & (5.4

where UHF Ti{'fL'D and UHF T;‘;’L's represent the ML — generated unscaled liquidity — demanding and — supplying
HFT activities for stock i on day t. @; and S, capture stock and day fixed effects, respectively. For the NASDAQ
upgrade analysis (Models 5.1 and 5.2), Post; . equals 1 after October 10, 2011, for NASDAQ-listed stocks with
tickers A-B, and after October 17, 2011, for other NASDAQ stocks. NYSE and Amex stocks serve as control
groups in these models. For the Amex speed bump analysis (Models 5.3 and 5.4), Post; . equals 1 after July 24,
2017, and Amex; . equals 1 for Amex-listed stocks. NYSE and NASDAQ stocks serve as control groups in these
models. Control variables (Ci’ft) include daily volatility (Volatility;,, standard deviation of transaction-level
returns), relative quoted spread (Spread; ., daily average of (ask-bid)/(0.5%(ask+bid) for each transaction),
inverse price (InvPrice;.), and dollar trading volume (Volume; ;). The analysis uses 10-working day windows
around implementation dates. Panel A reports results for the NASDAQ upgrade and Panel B for the Amex speed
bump. Standard errors are double-clustered by stock and day, with t-statistics in brackets. *, **, and *** indicate
significance at 10%, 5%, and 1%. R? values are within-R?.

Panel A: NASDAQ upgrade Panel B: Amex speed bump
(1) (i1) (i) (iv)
UHFT/{"P UHFT/}"® UHFT}"P UHFT"®
Post;, 1.055%** 1.347%*
(2.79) (2.27)
Post;, x Amex; -0.977** -0.696**
(-2.27) (-1.98)
Controls Yes Yes Yes Yes
Stock and Day FE Yes Yes Yes Yes
N obs. 43,234 43,234 45,530 45,530
R? 29% 18% 59% 49%




Table OA.2

HFT Response to Latency Arbitrage Opportunities

This table examines how our ML-generated unscaled HFT measures respond latency arbitrage opportunities using
the following OLS models:

4
UHFTL,"‘;’L'D =a; + B+ y1NLAO; + Z SKECE + &
k=1

4
UHFT{{"* = a; + B, + y,NLAO;, + Zk_lai’ftci’ft + &g

where UHF TL-I_‘ZL'D and Urepresent the ML — generated unscaled liquidity — demanding and — supplying HFT
activities for stock [ and day t. a; and B, capture stock and day fixed effects, respectively. NLAO; , is the number
of latency arbitrage opportunities, identified using the methodology detailed in Section 4.3. Control variables (C, i’ft)
include daily volatility (Volatility; ., standard deviation of transaction-level returns), relative quoted spread
(Spread, , daily average of (ask-bid)/(0.5%(ask+bid) for each transaction), inverse price (InvPrice; ), and dollar
trading volume (Volume; ;). Columns (i) and (ii) present the results for HF T;‘;’L'D and HF Ti{‘;"“'s, respectively. The
sample consists of 120 randomly selected NASDAQ- and NY SE-listed firms. Standard errors are double-clustered

by stock and day, with t-statistics in brackets. *, ** and *** indicate significance at 10%, 5%, and 1%. R? values
are within-R?.

® (i)
UHFT/"? UHFT/"®
NLAO;, 66.266%** -150.518**
(3.21) (-2.04)
Controls Yes Yes
Stock and Day FE Yes Yes
N obs. 246,139 246,139
R? 39% 38%




Table OA.3

Comparative Analysis of HFT Measures

This table evaluates our ML-generated unscaled HFT measures against alternative proxies using the following models:

NUHFTS = a; + B + v UHFT{"® +y,Flick;, + y30LV;, + y,Quotelnt;, + ysQTic + V6MGi( + &,
NUHFTS, = a; + By + v UHFT/}" + y,Flick;, + ys0LV;, + y,Quotelnt;, + vsQT;; + YeMG;( + €,

where NUHF Til’)t and NUHF Tift are NASDAQ’s unscaled liquidity-demanding and -supplying HFT measures, and UHF T;}ZL’D and UHF Ti{:"“'s are our ML-generated unscaled
HFT proxies, trained on January-June 2009 data) and alternative proxies from TAQ: quote volatility (Flick; ., average standard deviation of quote midpoints over 100 ms
intervals), OLV; . (OLV;;, sum of sub-100 share trades), quote intensity (Quotelnt; ., count of quote/depth changes), quote-to-trade ratio (QT; ., quoted shares/traded shares),
and the number of messages (MG;,).. All dependent variables are standardized. The analysis presents results for liquidity-supplying HFT in Panels A and C, while Panels B
and D focus on liquidity-demanding HFT. Panels A and B incorporate both stock and day fixed effects, whereas Panels C and D employ only day fixed effect. The sample
covers July-December 2009 for 120 randomly selected NASDAQ- and NYSE-listed firms with NASDAQ HFT data. Standard errors are double-clustered by stock and day,
with t-statistics in brackets. *, **_ and *** indicate significance at 10%, 5%, and 1%. R? values are within-R2.

Panel A: NUHFT,

UHFT{"®
Flick;,

OLV;,
Quotelnt; ,

QTie

MG,

Stock and Day FE

N obs.
RZ

(vi)

(vii)

(1) (i) (iii) (iv) (v)
1.349%*%
(10.93)
0.002
(0.78)
0.012*
(1.80)
0.793 %%
(5.89)
-0.253***
(-3.16)
Yes Yes Yes Yes Yes
14,238 14,238 14,238 14,238 14,238
68% 0.1% 0.5% 24% 4.5%

0.940%**
(5.88)
Yes
14,238
27%

1.163***
(9.14)
-0.002
(-0.87)

0.005%**
(2.59)
-0.073
(-0.67)

-0.133**
(-3.92)

0.440%***
(2.88)

Yes
14,238
72%




Panel B: NUHFT},

) (i1) (iii) (iv) ) (vi) (vii)
UHFT;{"" 1.045% 0.849%**
(11.47) (9.75)
Flick;, 0.002 -0.005%**
(0.09) (-3.14)
OLV;, 0.008 0.004**
(1.31) (2.45)
Quotelnt; 0.672%*%* 0.090
(6.12) (1.15)
QT;; -0.179%%* -0.100%%**
(-3.27) (-4.67)
MG;, 0.788%** 0.246**
(6.08) (2.07)
Stock and Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 64% 0% 0.5% 31% 4% 33% 69%
Panel C: NUHFT},
(i) (ii) (iii) (iv) v) (vi) (vii)
UHFTZ‘?L'S 1.552%%:* 1.534 %%
(31.38) (23.86)
Flick;, -0.085%** -0.001
(-3.57) (-0.49)
OLV;; -0.052 -0.006
(-1.21) (-0.79)
Quotelnt;, 1.439%** 0.082
(6.04) (0.50)
QT;; 1.054%** 0.022
(3.47) (0.71)
MG, 1.458%*** -0.070
(6.01) (-0.39)
Stock and Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 90% 0.3% 0.1% 60% 25% 61% 95%




Panel D: NUHFT/,

UHFT;{""
Flick;,

OLV;,
Quotelnt;

QT

MG;,

Stock and Day FE

N obs.
RZ

(1) (i1) (ii1) (iv) (v)
1.167***
(27.10)
-0.067***
(-3.82)
-0.038
(-1.06)
1.130%**
(7.68)
0.710%**
(3.33)
Yes Yes Yes Yes Yes
14,238 14,238 14,238 14,238 14,238
92% 0.4% 0.1% 70% 22%

(vi)

(vii)

1.144%%*
(7.63)
Yes
14,238
71%

1.146%**
(16.68)
-0.002
(-1.62)
-0.005
(-0.28)

0.245

(1.55)
0.022

(0.95)
-0.226
(-1.32)

Yes

14,238

94%




Table OA .4
HFT Activity and Information Acquisition—Jump ratio
This table examines how HFT activity affects information acquisition using the following OLS model:

4
JUMP g = a; + Bing + viUHFT/"? + y,UHFT" + Zk_lfsi’qu’fq + &

where JUMP; , measures information acquisition for stock i as the ratio of cumulative abnormal returns over [-1,
1] to cumulative abnormal returns over [-21, 1] around quarterly earnings announcements (q). UHF' TL-I_ZL'D and
UHF E{ZL‘S are ML-generated unscaled liquidity-demanding and liquidity-supplying HFT activities, measured as
averages of daily values over [-21, -1] around earnings announcements. Models include stock (a;) and month
(Bm,q) fixed effects, respectively. Control variables (Ci’fq) all measured as averages of daily values over [-21, -1]
around earnings announcements, include volatility (Volatility; 4), relative quoted spread (Spread; ), market
value (MValue; 4, price times shares outstanding), and institutional order imbalance (01B20k; 4, price impact of
trades over $20,000 from TAQ). The sample includes all U.S.-listed common stocks from 2010 to 2023. Standard

errors are double-clustered by stock and quarter, with t-statistics in brackets. *, **, and *** indicate significance
at 10%, 5%, and 1%. R? values are within-R?.

JUMP, ,

UHFT/H? 0.042%%*

(9.82)
UHFTL.’,ZL'S -0.022%#*

(-5.99)
Controls Yes
Stock and Month FE Yes
N obs. 49,515
R2 1%

10



Table OA.5

HFT Activity and Information Acquisition—FERC
This table examines how HFT activity affects information acquisition using the following model:

Return;q = a; + 4 + Z}lz_l(ynEarningi,qM +d,Earning; gn * UHFTL-I_ZL'D +
OpEarning; q.n * UHFT/S"®) + pyUHFT,{"" + p,UHFT{" + p;Return; g, +

4 <k rk
psReturn; q_; + Yy, 8iqCiq t+ €ig

where Return, 4 is quarterly stock returns for firm i in quarter g, measured as the percentage change in closing
prices between quarters ¢ — 1 and q. Earning; 4., denotes quarterly earnings (net income) normalized by the
market value of equity at the start of quarter g + n. The subscript n ranges from -1 to 1. UHF Ti,qL’D and UHF TiIZL'S
are ML-generated unscaled liquidity-demanding and liquidity-supplying HFT activities, measured as the quarterly
averages of daily values. Control variables (Ci’fq) all measured as quarterly averages of daily values, include
volatility (Volatility; ,), relative quoted spread (Spread; ), market value (MValue;,, price times shares
outstanding), and institutional order imbalance (0/B20k; 4, price impact of trades over $20,000 from TAQ). The
sample includes all U.S.-listed common stocks from 2010 to 2023. Standard errors are double-clustered by stock
and quarter, with t-statistics in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. R? values are
within-R2.

Return; 4
Earning; g41 * HF Y}{ZL'D —0.(20536*)**
Earning; g1 * HFTL.I_ZL'S 0.(07032;"*
Controls Yes
Stock and Quarter FE Yes
N obs. 157,343
RZ 4%
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